Search for BSM Higgs Bosons with ATLAS

Comment of the second sec

Jochen Dingfelder University of Bonn On behalf of the ATLAS Collaboration

SEARCH 2012 Workshop University of Maryland, March 17-19, 2012

Overview

- Fermiophobic $H \to \gamma\gamma$ New prelim. results (4.9 fb⁻¹)
 MSSM neutral $h/H/A \to \tau\tau$ Charged Higgs bosons $H^+ \to \tau_{had}\nu$ $H^+ \to \tau_{lep}\nu$ $H^+ \to c\bar{s}$ New prelim. results (4.6 fb⁻¹)
- ▶ Doubly charged Higgs $H^{++} \rightarrow \mu^+ \mu^+$ Published in PRD (1.6 fb⁻¹)
- ▶ NMSSM $a_1 \rightarrow \mu\mu$

Fermiophobic Higgs

- Suppressed Higgs couplings to fermions in 2HDM and Higgs triplet models
 - Here: simple benchmark model (LEP)
 - no fermion-Higgs couplings
 - SM boson-Higgs couplings
- **Production:** Vector-boson fusion and associated production with W/Z
- **Decays** to $\gamma\gamma$, WW, ZZ, $Z\gamma$ <u>Here:</u> focus on $\mathbf{H} \rightarrow \gamma\gamma$
 - \Rightarrow larger $\sigma \times BR$ than SM for light Higgs
 - \Rightarrow higher Higgs p_T

Fermiophobic Higgs $\rightarrow \gamma\gamma$

700 • Selection: (identical to SM H $\rightarrow \gamma\gamma$) 600 500 • 2 isolated photons with $p_T > 40$, 20 GeV 400 Di-photon mass: 100 < m_{yy} < 160 GeV 300 200 • 9 categories based on 100F presence of γ conversions Bkg 50 Data - | • γ calorimeter impact point -100∟ 100 • **p**_{Tt}: related to di-photon p_T 110 120 Events / GeV \mathbf{p}^{γ_2} 100 thrust axis **р**_т 80 • Signal m_{vv} model Crystal Ball (core) + wide Gaussian (tail) 20 Background m_{vv} model 20 **Exponential**

Fermiophobic Higgs $\rightarrow \gamma\gamma$: Exclusion limits

Observed m_H exclusion: [110.0, 118.0], [119.5, 121.0] **Expected** m_H exclusion: [110.0, 123.5] Largest excess at m_H=125.5 GeV

Including look-elsewhere effect: Significance: **1.6σ** Prob. of background fluctuation: **5%**

Neutral MSSM Higgs

gluon-gluon fusion: $gg \rightarrow h/H/A$

b-associated production: bbh/H/A

- h/H and A nearly mass degenerate
- 2 parameters at tree level: m_A , $tan\beta$
- Enhanced couplings to b and τ in large parts of parameter space $\sigma_{bbh/H/A} \propto tan^2\beta$

Tau signature and identification

Neutral MSSM Higgs : Selection

e + μ

- 1 isolated e with p_T > 25 GeV
- 1 isolated μ with p_T > 20 GeV
- Opposite charges
- $E_T^{miss} + p_T^e + p_T^{\mu} < 120 \text{ GeV}$ $\Delta \Phi(e,\mu) > 2.0 \text{ rad}$

(top, WW, ZZ suppression)

$e/\mu + \tau_{had}$

- 1 isolated e / μ with p_T > 25 / 20 GeV
- 1 τ_{had} with $p_T > 20 \text{ GeV}$
- Opposite charges
- **Di-lepton veto** (Z, top)
- **E**_T^{miss} > **20 GeV** (QCD)
- m_T < 30 GeV (W)

τ_{had} + τ_{had}

- Di-τ_{had} trigger
- 2 τ_{had} with p_T > 45 / 30 GeV
- Opposite charges
- E_T^{miss} > 25 GeV (QCD suppression)

Neutral MSSM Higgs: Mass reconstruction

- $m_{\tau\tau}^{\text{visible}}$ (invariant mass of visible tau decay products) • Visible mass :
- Effective mass: $m_{\tau\tau}^{\text{effective}} = \sqrt{(p_{\tau^+} + p_{\tau^-} + p_{\text{miss}})^2}$

 $p_{\text{miss}} = (E_{\text{T}}^{\text{miss}}, E_{\text{x}}^{\text{miss}}, E_{\text{y}}^{\text{miss}}, 0)$

• Missing mass calculator (MMC):

• 7 unknown parameters: two "missing" 3-momenta, m_{yy}

Arbitrary units

0.01

0.05

0.1

1-prong τ decay

ATLAS Simulation

 $Z \rightarrow \tau \tau$ Simulation

Probability function

0.2

0.15

45<p_≤50 [GeV]

 4 constraints from E_x^{miss} , E_v^{miss} , $m_{\tau 1}$, $m_{\tau 2}$

 \Rightarrow scan over $\Delta \Phi(v, l), \Delta \Phi(v, h), m_{vv}$

 \Rightarrow weight solution according to probability of 3D angle in solution 0.005

 \Rightarrow MMC mass = Max. of weighted $m_{\tau\tau}$ distribution

A.Elagin, P.Murat, A.Pranko, A.Safonov, Nucl. Inst. Meth. A654 (2011) 481

Neutral MSSM Higgs : Background estimation

Background estimation based on data control samples:

Neutral MSSM Higgs : Results

Final state	Exp. Background	Data
еμ	$(2.6 \pm 0.2) \times 10^3$	2472
ℓau_{had}	$(2.1 \pm 0.4) \times 10^3$	1913
$ au_{had} au_{had}$	$233 {}^{+44}_{-28}$	245
Sum	$(4.9 \pm 0.6) \times 10^3$	4630

Neutral MSSM Higgs : Exclusion limits

$\sigma \times BR (\Phi \rightarrow \tau \tau)$

- Assume only one resonance (Φ): 100% gg → Φ or 100% bbΦ production (acceptances similar)
- Useful to test arbitrary models

$(m_A, tan\beta)$ plane

- Need to assume specific (c)MSSM scenario
- Here: m_h^{max} scenario

12

Neutral MSSM Higgs : Exclusion limits

Update to full 4.9 fb⁻¹ data set & inclusion of b-tagging in progress!

Charged Higgs

- Predicted in Higgs doublet (e.g. MSSM) and triplet models
- m_{H+} < m_t: dominant production in top quark decays
- m_{H+} > m_t : gb \rightarrow tH⁺ production important, but more data needed
- for $\tan\beta > 3$, **preferred decay mode** is $\mathbf{H} \rightarrow \tau \mathbf{v}$ (here: assume BR of 100%)

$$\begin{split} t\overline{t} &\to b\overline{b}H^{\pm}W^{\mp} \to b\overline{b}(\tau_{lep}\nu)(q\overline{q}) \quad \text{: lepton + jets} \\ t\overline{t} &\to b\overline{b}H^{\pm}W^{\mp} \to b\overline{b}(\tau_{had}\nu)(\ell\nu) \quad \tau_{had} + \text{ lepton} \\ t\overline{t} &\to b\overline{b}H^{\pm}W^{\mp} \to b\overline{b}(\tau_{had}\nu)(q\overline{q}) \quad \tau_{had} + \text{ jets} \end{split}$$

Charged Higgs: Lepton + jets channel

Discriminating variables:

 $\cos \theta_1^* =$

Normalised number of events 0.25 0.15 0.1 0.2

0.05

-0.8-0.6-0.

 0.3_{1}

Selection:

- **1 isolated e / μ** with p_T > 25 / 20 GeV
- \geq 4 jets (2 b-tagged) with $p_T > 20 \text{ GeV}$
- E_T^{miss} > 40 GeV if $|\Phi_{\text{Lmiss}}| > \pi/6$ $E_T^{miss} \times |sin(\Phi_{l,miss})| > 20 \text{ GeV} \text{ if } |\Phi_{l,miss}| < \pi/6$
- Identify "hadronic side" by choosing combination of 1 b-jet and 2 light jets that minimizes $\chi^2 = \frac{(m_{jjb} - m_{top})^2}{\sigma_{top}^2} + \frac{(m_{jj} - m_W)^2}{\sigma_W^2}$

$$\frac{2}{bL} - m_W^2 - 1 \approx \frac{4 \ p^b \cdot p^l}{m_{top}^2 - m_W^2} - 1 \qquad (m_T^H)^2 = \left(\sqrt{m_{top}^2 + (p_T^{-1} + p_T^{-1} + p_T$$

Charged Higgs: Lepton + jets channel

± 25

tī

Data

 $t \rightarrow bH^+$ (130 GeV)

933

120

 \pm

4

Misidentified-lepton background determined from control sample with loosened lepton ID

Signal region: $\cos\theta_{l}^{*} < -0.6$, $m_{T}(I, E_{T}^{miss}) < 60 \text{ GeV}$

Charged Higgs: τ_{had} + lepton channel

Selection:

- **1 isolated e / μ** with p_T > 25 / 20 GeV
- 1 τ_{had} with $p_T > 20$ GeV
- \geq 2 jets (\geq 1 b-tagged) with $p_T > 20 \text{ GeV}$
- Sum of primary-vertex track p_T:

Σp_T > 100 GeV

Discriminating variable: E_T^{miss}

g Jogge

- Background contributions with misidentified taus: μ : 0.05%, e: 1%, jets: 55%; jet $\rightarrow \tau_{had}$ mis-ID measured with W+jets
- True-tau background taken from simulation

 v_{τ}

e/μ

had v

 H^+

W

A candidate event in τ_{had} + lepton channel

Charged Higgs: τ_{had} + jets channel

Selection:

- τ + E_T^{miss} trigger
- 1 τ_{had} with $p_T > 40$ GeV
- ≥ 4 jets (≥ 1 b-tagged) with p_T > 20 GeV
- E_T^{miss} > 65 GeV
- E_T^{miss} significance: $\frac{E_T^{\text{miss}}}{0.5 \cdot \sqrt{\sum p_T}} > 13 \text{ GeV}^{1/2}$
- jjb combination (hightest p_T) consistent m_{top}

Discriminating variable:

 $m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1-\cos\phi_{\tau,{\rm miss}})},$

- True-tau background estimated with τ embedding in μ+jets events (with top-pair like event topology)
- Mis-id. tau background: as for $\tau_{\text{had}}\text{+lepton}$

Charged Higgs: τ_{had} + jets channel

Sample	Event yield (τ +jets)
True τ (embedding method)	$210 \pm 10 \pm 44$
Misidentified jet $\rightarrow \tau$	$36 \pm 6 \pm 10$
Misidentified $e \rightarrow \tau$	$3 \pm 1 \pm 1$
Multi-jet processes	74 ± 3 ± 47 <
\sum SM	$330 \pm 12 \pm 65$
Data	355
$t \rightarrow bH^+ (130 \text{ GeV})$	$220 \pm 6 \pm 56$

Multijet background estimated by fitting E_T^{miss} shapes to data.

Charged Higgs: Exclusion limits

Charged Higgs: Exclusion limits (MSSM)

Charged Higgs: $H^+ \rightarrow c\overline{s}$

- $H \rightarrow c\overline{s}$ dominates for tan $\beta < 1$
- Require large E_T^{miss} and m_T to suppress multijet background
- Kinematic fit with W and top mass contraints to find best H⁺ candidate
- Set limits on BR(t \rightarrow H⁺b) assuming BR(H⁺ \rightarrow cs) = 100%

Doubly-charged Higgs

- Relevant e.g. in Higgs triplet, Little Higgs and Left-Right Symmetric models
- Select µ pairs with same-sign charges and p_T> 20 GeV
- Look for resonance in µ[±]µ[±] mass spectrum
- No significant excess over SM background found

Doubly-charged Higgs: Exclusion limits

25

NMSSM $a_1 \rightarrow \mu^+\mu^-$

- NMSSM: introduces singlet scalar field to solve μ problem
 - $\Rightarrow 3 \text{ CP-even scalars } (h_1, h_2, h_3)$ 2 CP-odd scalars (a_1, a_2)
- a₁ can be very light!
 m_{a1} < 2 m_B

Analysis:

- Opposite-sign **di-muons** (P_T>4GeV)
- Likelihood ratio selection based on $\mu^+\mu^-$ vertex χ^2 and μ isolation
- Set limits by fitting to mass spectrum
- Y region excluded

- Various interesting BSM Higgs scenarios are being probed in parallel to SM Higgs search
- No indication for BSM Higgs bosons yet ... but lots of upper limits on cross sections/branching ratios
- Searches continue with more data and improved methods
 ⇒ There is still significant room for BSM Higgs searches for the year ahead ... and after!

Backup Slides

Fermiophobic Higgs $\rightarrow \gamma\gamma$: Exclusion limits

Fermiophobic Higgs $\rightarrow \gamma\gamma$: Systematics

Signal event yield	
Photon reconstruction and identification	±11%
Effect of pileup on photon identification	±4%
Isolation cut efficiency	±5%
Trigger efficiency	±1%
Higgs boson cross section	±9%
Luminosity	±3.9%
Signal mass resolution	
Calorimeter energy resolution	±12%
Photon energy calibration	±6%
Effect of pileup on energy resolution	±3%
Photon angular resolution	±1%
Signal category migration	
Higgs boson $p_{\rm T}$ modelling	±1%
Conversion rate	±4.5%
Background model	$\pm (0.1 - 7.9)$ events

MSSM Higgs sector

• MSSM: 2 Higgs doublets \Rightarrow 5 Higgs bosons: h⁰ (CP=1), H⁰ (CP=1), A⁰ (CP=-1), H[±]

- At tree level described by two parameters: m_A , $tan\beta = v_u/v_d$
- Fixed mass relations at tree level:

$$\begin{split} m_{H,h}^2 &= \frac{1}{2} \left(m_A^2 + m_Z^2 \pm \sqrt{(m_A^2 + m_Z^2)^2 - 4m_Z^2 m_A^2 \cos^2 2\beta} \right) \\ m_h^2 &\le m_Z^2 \cos^2 2\beta &\le m_Z^2 \end{split}$$

 Upper mass bound modified by radiative corrections (depend on SUSY parameters, e.g. mixing in stop sector)

All parameters except $tan\beta$, m_A fixed in benchmark scenarios:

 m_h^{max} : $m_h < 133 \text{ GeV}$, maximum allowed mass for hnomixing: $m_h < 116 \text{ GeV}$, no mixing in stop sectorgluphobic: $m_h < 119 \text{ GeV}$, suppressed gg fusionsmall α : $m_h < 123 \text{ GeV}$, suppressed ttbar h, h \rightarrow bb

MSSM Higgs production

 $gg \rightarrow b\bar{b}H$

 $bg \rightarrow bH$ $b\bar{b} \rightarrow H$

Estimation of $Z \rightarrow \tau \tau$ Background

- Reliable $Z \rightarrow \tau \tau$ model important for low-mass Higgs
- Desirable to use real data, but cannot be selected signal-free
- Instead, use high-purity Z → μ μ sample (~ signal-free due to small Higgs-μ coupling)

$Z \rightarrow \tau \tau$ "Embedding": Method

- In Z → μ μ events, remove muon tracks and nearby calorimeter cells
- Simulate stand-alone Z → τ τ decays with same 4-momenta for the τ's as for the muons (after mass correction)
- Merge into single hybrid event and re-reconstruct objects and $E_{\rm T}^{\rm miss}$

Neutral MSSM Higgs: Background Estimation

• Estimate background from same-sign (SS) data sample

$$\begin{split} n_{\mathrm{OS}}^{Bkg} = & n_{\mathrm{SS}}^{Bkg} + n_{\mathrm{OS-SS}}^{\mathrm{QCD}} + n_{\mathrm{OS-SS}}^{W} + n_{\mathrm{OS-SS}}^{Z} + n_{\mathrm{OS-SS}}^{\mathrm{other}} \\ \approx & n_{\mathrm{SS}}^{Bkg} + n_{\mathrm{OS-SS}}^{W} + n_{\mathrm{OS-SS}}^{Z} + n_{\mathrm{OS-SS}}^{\mathrm{other}} \end{split}$$

• Assumption made for QCD:

$$r_{
m QCD} = n(OS)/n(SS) \approx 1$$

Checked with QCD-enhanced sample

- $E_T^{miss} < 15 \text{ GeV}$
- loosened lepton isolation

$$r_{
m QCD} = 1.16 \pm 0.04^{stat} \pm 0.09^{syst}$$

 $r_{
m QCD}^{MC} = 1.06 \pm 0.13^{stat}$

Neutral MSSM Higgs: Background Estimation

- n_{SS} from nominal selection with $Q(\ell) \cdot Q(\tau) = +1$
- Z → T⁺T⁻ and other background OS-SS "add-on" from simulation
- W+jets OS-SS "add-on": from M_T > 50 GeV control sample

Neutral MSSM Higgs: Systematics

Table 4: Uncertainties on the number of selected events for those background contributions that are at least partially estimated from simulation and for a hypothetical signal ($m_A = 120$ GeV and $\tan \beta = 20$ for the $e\mu$ and $\ell \tau_{had}$ final states and $m_A = 200$ GeV and $\tan \beta = 20$ for the $\tau_{had} \tau_{had}$ final state). All numbers are given in %. When three numbers are given the first refers to the $e\mu$ final state, the second to the $\ell \tau_{had}$ final states and the third to the $\tau_{had} \tau_{had}$ final state. If an uncertainty does not apply for a certain background, this is indicated by a "-". For the $e\mu$ final state, the uncertainty on the W+jets background is dominated by the statistical component and the systematic uncertainty is neglected; for the $\ell \tau_{had}$ final state the W+jets background is estimated from data.

	W+jets	Di-boson tī+		boson $t\bar{t}+$ $Z/\gamma^* \rightarrow$		Signal
			single-top	ee, μμ	$\tau^+\tau^-$	
$\sigma_{\it inclusive}$	-/-/5	7	10	5/5/-	5	14/14/16
Acceptance	-/-/20	4/2/7	3/2/9	2/14/-	5/14/14	5/7/9
e efficiency	-/-/0.8	4/3.1/0.5	4/3.6/0.3	4/3.1/-	4/3.0/0.5	4/3.6/0.1
μ efficiency	-/-/0.3	2/1.2/0.4	2/1.1/0.0	2/1.3/-	2/1.8/0.4	2/1.0/0.1
τ efficiency and fake rate	-/-/21	-/9.1/15	-/9.1/13	-/48/-	-/9.1/15	-/9.1/15
Energy scales and resolution	-/-/ ⁺³⁴	$2/_{-9}^{+19}/_{-12}^{+26}$	6/+5/12	$1/_{-25}^{+39}/-$	$1/11/_{-23}^{+63}$	$1/_{-23}^{+30}/_{-8}^{+9}$
Luminosity	-/-/3.7	3.7	3.7	3.7/3.7/-	3.7	3.7
Total uncertainty	-/-/ ⁺⁴⁵	$10/_{-16}^{+23}/_{-22}^{+32}$	13/15/23	8/+64/-	9/21/+67	$16/_{-30}^{+35}/_{-25}^{+26}$

H⁺: Estimation of mis-ID lepton background

Misidentified-lepton background determined from samples with **tight** (T) and **loose** (L) lepton ID:

$$N^L = N^L_m + N^L_r$$
$$N^T = N^T_m + N^T_r$$

$$N_m^T = \frac{p_m}{p_r - p_m} (p_r N^L - N^T)$$

with $p_r = \frac{N_r^T}{L}$ and $p_m = \frac{N_m^T}{L}$

from
$$Z \rightarrow e^+e^-$$
 from multi-jets

38

Charged Higgs: Systematics

Source of uncertainty	Normalisation uncertainty
lepton+jets:	
Generator and parton shower ($b\bar{b}WH^+$, signal region)	10%
Generator and parton shower $(b\bar{b}W^+W^-, signal region)$	8%
Generator and parton shower ($b\bar{b}WH^+$, control region)	7%
Generator and parton shower $(b\bar{b}W^+W^-, \text{ control region})$	6%
Initial and final state radiation (signal region)	8%
Initial and final state radiation (control region)	13%
τ +lepton:	
Generator and parton shower $(b\bar{b}WH^+)$	2%
Generator and parton shower $(b\bar{b}W^+W^-)$	5%
Initial and final state radiation	13%
τ +jets:	
Generator and parton shower $(b\bar{b}WH^+)$	5%
Generator and parton shower $(b\bar{b}W^+W^-)$	5%
Initial and final state radiation	19%

Charged Higgs: Systematics

Source of uncertainty	Normalisation uncertainty	Shape uncertainty
lepton+jets: lepton misidentification		
Choice of control region	6%	-
Z mass window	4%	-
Jet energy scale	16%	-
Jet energy resolution	7%	-
Sample composition	31%	-
τ +lepton: jet $\rightarrow \tau$ misidentification		
Statistics in control region	2%	-
Jet composition	11%	-
Object-related systematics	23%	3%
τ +lepton: $e \rightarrow \tau$ misidentification		
Misidentification probability	20%	-
τ +lepton: lepton misidentification		
Choice of control region	4%	-
Z mass window	5%	-
Jet energy scale	14%	-
Jet energy resolution	4%	-
Sample composition	39%	-
τ +jets: true τ		
Embedding parameters	6%	3%
Muon isolation	7%	2%
Parameters in normalisation	16%	-
τ identification	5%	-
τ energy scale	6%	1%
τ +jets: jet $\rightarrow \tau$ misidentification		·
Statistics in control region	2%	-
Jet composition	12%	-
Purity in control region	6%	1%
Object-related systematics	21%	2%
τ +jets: $e \rightarrow \tau$ misidentification		
Misidentification probability	22%	-
τ +jets: multi-jet estimate		
Fit-related uncertainties	32%	-
$E_{\rm T}^{\rm miss}$ -shape in control region	16%	-

Doubly-Charged Higgs: Event yields

Sample	Number of muon pairs with $m(\mu^{\pm}\mu^{\pm})$					
	$>15~{\rm GeV}\left >100~{\rm GeV}\right >200~{\rm GeV}\left >300$					
prompt muons	63.1 ± 7.8	34.9 ± 4.5	9.6 ± 1.6	2.24 ± 0.54		
non-prompt muons	$37.5^{+10.3}_{-12.4}$	13.0 ± 4.5	1.8 ± 0.7	0.31 ± 0.18		
charge flip	$0^{+2.7}_{-0.0}$	$0^{+0.9}_{-0.0}$	$0^{+0.7}_{-0.0}$	$0^{+0.61}_{-0.00}$		
total	$100.6\substack{+13.2\\-14.7}$	48.0 ± 6.4	$11.4^{+1.8}_{-1.7}$	$2.56\substack{+0.83\\-0.57}$		
data	101	32	7	1		

Sample	Number of muon pairs with $m(\mu^+\mu^+)$					
	$> 15~{\rm GeV}$	$> 100 { m ~GeV}$	$> 200 { m ~GeV}$	$> 300 { m ~GeV}$		
prompt muons	41.2 ± 5.3	23.5 ± 3.2	6.6 ± 1.2	1.33 ± 0.40		
non-prompt muons	$20.2\substack{+5.9 \\ -6.9}$	6.3 ± 2.2	1.0 ± 0.4	0.24 ± 0.15		
charge flip	$0^{+1.3}_{-0.0}$	$0^{+0.5}_{-0.0}$	$0^{+0.3}_{-0.0}$	$0^{+0.30}_{-0.00}$		
total	$61.4\substack{+8.0 \\ -8.7}$	29.8 ± 3.9	7.5 ± 1.3	$1.57\substack{+0.52 \\ -0.42}$		
data	61	22	6	1		

Sample	Number of muon pairs with $m(\mu^-\mu^-)$					
	$> 15~{\rm GeV}$	$> 100 { m ~GeV}$	$> 200 { m ~GeV}$	$> 300 { m ~GeV}$		
prompt muons	21.9 ± 3.0	11.4 ± 1.8	3.04 ± 0.67	0.91 ± 0.32		
non-prompt muons	$17.4\substack{+4.7 \\ -5.8}$	6.8 ± 2.4	0.83 ± 0.38	$0.07\substack{+0.08 \\ -0.07}$		
charge flip	$0^{+1.3}_{-0.0}$	$0^{+0.5}_{-0.0}$	$0^{+0.34}_{-0.0}$	$0^{+0.30}_{-0.00}$		
total	$39.3^{+5.8}_{-6.5}$	18.2 ± 3.0	$3.87^{+0.84}_{-0.77}$	$0.98\substack{+0.45 \\ -0.33}$		
data	40	10	1	0		

NMSSM $a_1 \rightarrow \mu^+\mu^-$: Additional Plots

	Relative Uncertainty (%) at $m(a_1)$ (GeV)							
Source	6.0	6.5	7.0	7.5	8.0	8.5	11.0	11.5
Luminosity		±3						
Pythia vs MC@NLO	±67	±55	±49	±40	±36	±32	± 20	± 20
Dimuon Efficiency	+14 -13	+14 -13	+14 -13	+14 -13	+14 -13	+14 -13	+15 -14	+15 -14
Trigger Correction	±8							
MC Statistics	±10	± 10	±10	±10	±10	±10	±9	±9
Likelihood Ratio Modeling	±3							
Total (Pythia vs MC@NLO)	±70	±59	±53	±45	±41	±37	±28	±28