SEARCH Workshop, University of Maryland, March 17-19, 2012

# Searches for Exotic Heavy Quarks and tt Resonances in ATLAS

Aurelio Juste ICREA/IFAE, Barcelona

For the ATLAS Collaboration





### Dataset



- 2011 ATLAS Dataset:
  - Peak instantaneous luminosity: 3.7x10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - Integrated luminosity: ~5.3 fb<sup>-1</sup> recorded
    - → 4.7 fb<sup>-1</sup> after all data quality requirements (these analyses use full detector!)
- Results presented here consider dataset recorded up to August 2011:
  - → ~1-2 fb<sup>-1</sup> in analysis
- Analyses using full 2011 dataset are underway and should be available soon.

# **Exotic Heavy Quarks**

### 4<sup>th</sup> Generation Quarks

- SM doesn't predict # of fermion generations:
  - Upper bound from QCD asymptotic freedom: #families < 9.
  - CKM constraints fairly weak.
- SM4 = SM + 4<sup>th</sup> generation family of fermions with 100 GeV < M < 600 GeV. Above 600 GeV large Yukawa couplings render model nonperturbative.
- In this talk will focus on heavy quarks
- Who ordered that?
  - Consistent w/ precision EW data and allowing for a heavier Higgs boson (up to ~500 GeV).
  - Extended CKM matrix could provide enough CP-violation to explain matterantimatter asymmetry.
     CKM<sub>4x4</sub> =
  - Can explain some anomalies in CPviolation measurements in B-physics.



| $0.97377 \pm 0.00027$ | $0.2257 \pm 0.0021$ | $0.00431 \pm 0.00030$ | < 0.044 |
|-----------------------|---------------------|-----------------------|---------|
| $0.230 \pm 0.011$     | $0.957 \pm 0.095$   | $0.0416 \pm 0.0006$   | < 0.46  |
| $0.0074 \pm 0.0008$   | $0.0406 \pm 0.0027$ | > 0.78                | < 0.47  |
| < 0.063               | < 0.46              | < 0.47                | > 0.57  |

### **Vector-like Quarks**

- Vector-like quarks: left and right components transform the same under  $SU(2)_{1}$  $\rightarrow$  can couple to SM particles without upsetting precision EW and flavor constraints.
- Vector-like guarks in a doublet need to be nearly degenerate in mass.
- Predicted by many models: extra-dimensions, Little Higgs, GUTs,... ٠
- Since mixing with other quarks is  $\sim m/M$ , they preferentially couple to the 3<sup>rd</sup> generation.
- Quite a few possibilities to explore! Branching ratios can be quite model-dependent.

| JHEP 11, 030 (2 | 009)            | (trip        | lets not included)             |                                                                              |
|-----------------|-----------------|--------------|--------------------------------|------------------------------------------------------------------------------|
|                 | Label           | Charge       | Decay mode                     |                                                                              |
| T singlet       | T <sub>s</sub>  | +2/3         | T→W⁺b, Zt, ht                  | (for m <sub>Q</sub> →∞)                                                      |
| B singlet       | B <sub>S</sub>  | -1/3         | B <b>→</b> W⁻t, Zb, hb         | D 0.6 Wb                                                                     |
| (T,B) doublet   | TB <sub>d</sub> | (+2/3, -1/3) | T→W⁺b, Zt, ht<br>B→W⁺t, Zb, hb | ht ht                                                                        |
| (X,T) doublet   | XT <sub>d</sub> | (+5/3, +2/3) | X→W⁺t<br>T→Zt, ht              | 2 0.2 ↓                                                                      |
| (B,Y) doublet   | BY <sub>d</sub> | (-1/3, -4/3) | B→Zb, hb<br>Y→W <sup>-</sup> b | 0 - 400 500 600 700 800<br>300 400 500 600 700 800<br>m <sub>+</sub> , [GeV] |
|                 |                 |              |                                | 5                                                                            |

PRD 81, 035004 (2010)

"Domooratio"

### **Vector-like Quarks**

- Vector-like quarks: left and right components transform the same under SU(2)<sub>L</sub>
   → can couple to SM particles without upsetting precision EW and flavor constraints.
- Vector-like quarks in a doublet need to be nearly degenerate in mass.
- Predicted by many models: extra-dimensions, Little Higgs, GUTs,...
- Since mixing with other quarks is ~m/M, they preferentially couple to the 3<sup>rd</sup> generation.
- Quite a few possibilities to explore! Branching ratios can be quite model-dependent.

|                 |                 |              |                                | "W-phobic"                                          |
|-----------------|-----------------|--------------|--------------------------------|-----------------------------------------------------|
| JHEP 11, 030 (2 | 009)            | (trip        | lets not included)             |                                                     |
|                 | Label           | Charge       | Decay mode                     | 8.0 8°                                              |
| T singlet       | T <sub>s</sub>  | +2/3         | T→W⁺b, Zt, ht                  | Jati                                                |
| B singlet       | B <sub>S</sub>  | -1/3         | B <b>→</b> W⁻t, Zb, hb         |                                                     |
| (T,B) doublet   | TB <sub>d</sub> | (+2/3, -1/3) | T→W⁺b, Zt, ht<br>B→W⁻t, Zb, hb |                                                     |
| (X,T) doublet   | XT <sub>d</sub> | (+5/3, +2/3) | X→W⁺t<br>T→Zt, ht              | ÷ 0.2 Wb                                            |
| (B,Y) doublet   | BY <sub>d</sub> | (-1/3, -4/3) | B→Zb, hb<br>Y→W⁻b              | 0 300 400 500 600 700 800<br>m <sub>t</sub> , [GeV] |
|                 |                 |              |                                | 6 PRD 81, 035004 (2010)                             |

### **Heavy Quark Production**

- Up to masses ~1 TeV, dominant production is in pairs via the strong interaction:  $\sqrt{s}=7$  TeV:  $\sigma(Q\overline{Q}) \sim 1.5$  pb for m<sub>Q</sub>~400 GeV vs  $\sigma(t\overline{t}) = 160$  pb  $\sqrt{s}=14$  TeV:  $\sigma(Q\overline{Q}) \sim 8$  pb for m<sub>Q</sub>~400 GeV vs  $\sigma(t\overline{t}) = 880$  pb
- Many models involving vector-like quarks also have new heavy spin-1 colored particles (e.g. G') which can enhance significantly the cross section.
- For masses above ~1 TeV the dominant production mode is single via the EW interactions (model-dependent, but also opportunity to measure weak couplings of heavy quarks!).



### **Signatures: 4th Generation Quarks**

 4<sup>th</sup> generation models have a restricted list of available signatures that simplify the search strategy: TT→WbWb, BB→WtWt

|              |           | <br> |                 | <br> |
|--------------|-----------|------|-----------------|------|
|              |           |      | TB <sub>d</sub> |      |
|              |           |      |                 |      |
|              |           |      |                 |      |
| 4 leptons    | 41 (0Z)   |      | ВB              |      |
|              |           |      |                 |      |
| 3 leptons    | 31 (0Z)   |      | $B\overline{B}$ |      |
|              |           |      |                 |      |
| OS dileptons | l+l- (0Z) |      | TT,BB           |      |
| SS dileptons | 1±1±      |      | $B\overline{B}$ |      |
| lenton+iets  | l± (4j)   |      | ΤŢ              |      |
|              | l± (≥6j)  |      | ΒB              |      |

### **Signatures: Vector-like Quarks**

• If we consider VLQ models, there are many signatures that could be exploited, and which are ultimately needed to both enhance discovery potential and model discrimination.



• Of course, some of them are more challenging or powerful than others...

### **Signatures Covered in This Talk**



# Up-type quarks

### TT→WbWb (lepton+jets)



- Event selection:
  - =1 e/μ, p<sub>T</sub>(e)>25 GeV, p<sub>T</sub>(μ)>20 GeV
  - e(μ)+jets: E<sub>T</sub><sup>miss</sup>>35(20) GeV
  - $E_T^{miss}+M_T(W)>60 \text{ GeV}$
  - $\geq$ 3 jets with p<sub>T</sub>>25 GeV, |η|<2.5; p<sub>T1</sub>>60 GeV
  - ≥1 b-tagged jets
- Background: dominated by tt+jets (modeled with MC@NLO).
- Strategy:
  - Loose event selection to maximize signal acceptance.
  - Consider 3-jet events to help constrain background systematics.
  - Analyze separately four analysis channels (e, μ)x(3 jets, ≥4 jets) and combine at the end.
- Observable: reconstructed heavy quark mass (m<sub>jjj</sub> in 3-jet bin, mass from kinematic fitting in ≥4–jet bin).



#### arXiv:1202.3076 [hep-ex]

### TT→WbWb (lepton+jets)

- Exploit high-statistics in backgrounddominated "sidebands" to constrain impact of systematic uncertainties (a.k.a. "profiling").
- Dominant systematic uncertainties:
  - Jet energy scale
  - tt modeling: ISR/FSR,
     NLO generator (\*),
     fragmentation model (\*)
  - (\*) Not profiled
- Hypothesis testing: CL<sub>s</sub> method via MCLimit, profiling of (some) systematic uncertainties.
- Limit at 95% C.L.: m<sub>T</sub>>404 GeV (>394 GeV expected)
   Limits under assumption BR(T→Wb)=1 due to b-tagging requirement; perfectly applicable to Y→W<sup>-</sup>b (Q=-4/3).

#### Data in good agreement with background expectation

|                               | $e+\geq 4$ jets | $\mu + \geq 4$ jets |
|-------------------------------|-----------------|---------------------|
| $t\bar{t}$                    | $4470\pm920$    | $5900 \pm 1200$     |
| W+jets                        | $830\pm580$     | $1160\pm790$        |
| Z+jets                        | $86\pm56$       | $83\pm46$           |
| Single top                    | $262\pm70$      | $325\pm79$          |
| Dibosons                      | $12\pm5$        | $17\pm5$            |
| Multi-jet                     | $320\pm320$     | $340\pm340$         |
| Total prediction              | $6000 \pm 1100$ | $7800 \pm 1400$     |
| Data                          | 6145            | 8149                |
| $t' \bar{t'} (400  { m GeV})$ | $102.0\pm10.5$  | $98.1 \pm 11.1$     |
|                               |                 |                     |





- Signature:  $I^+I'^- + E_T^{miss} + \ge 2$  jets  $(I, I'=e, \mu)$
- Event pre-selection:
  - =2 opposite-sign leptons: ee,  $\mu\mu$  or  $e\mu$
  - p<sub>T</sub>(e)>25 GeV, p<sub>T</sub>(μ)>20 GeV
  - $\geq 2$  jets with  $p_T > 25$  GeV,  $|\eta| < 2.5$
  - eμ-only: H<sub>T</sub>>130 GeV
  - ee/μμ-only:
    - M<sub>II</sub>>15GeV, |M<sub>II</sub>-M<sub>Z</sub>|>10 GeV
    - E<sub>T</sub><sup>miss</sup>>60 GeV
- Background: dominated by tt+jets (modeled with MC@NLO).
- Strategy:
  - Reconstruct heavy quark mass under collinear approximation.
  - Apply tight final selection to suppress background.
  - No high-statistics sidebands available so no benefit from profiling of systematics.





 Observable: average reconstructed heavy quark mass.

→ exploits small angle between lepton and neutrino in boosted W decays from signal.

- Assume two heavy quarks with the same mass decaying semileptonically.
- Assume  $E_T^{miss}$  entirely comes from v's.
- Perform MINUIT fit allowing for nonzero  $\Delta \eta(I,v)$  and  $\Delta \varphi(I,v)$ .
- Keep solution that minimizes  $|m_{coll1}-m_{coll2}|$  and remove events with  $|m_{coll1}-m_{coll2}|>25$  GeV.





 Observable: average reconstructed heavy quark mass.

→ exploits small angle between lepton and neutrino in boosted W decays from signal.

- Assume two heavy quarks with the same mass decaying semileptonically.
- Assume  $E_T^{miss}$  entirely comes from v's.
- Perform MINUIT fit allowing for nonzero  $\Delta \eta(I,v)$  and  $\Delta \varphi(I,v)$ .
- Keep solution that minimizes  $|m_{coll1}-m_{coll2}|$  and remove events with  $|m_{coll1}-m_{coll2}|>25$  GeV.









| $m_Q$ | Expected             | Expe | $\mathbf{ected}$ | Observed |
|-------|----------------------|------|------------------|----------|
| (GeV) | Background           | Sig  | nal              | Data     |
| 300   | $300 \ ^{+40}_{-40}$ | 95   | $^{+14}_{-12}$   | 315      |
| 350   | $148 \ ^{+22}_{-18}$ | 35   | $^{+5}_{-4}$     | 180      |
| 400   | $75 \ ^{+11}_{-10}$  | 17.1 | $^{+2.5}_{-2.1}$ | 89       |
| 450   | $49 \ ^{+8}_{-6}$    | 8.4  | $^{+1.2}_{-1.0}$ | 57       |
| 500   | $30 \ ^{+5}_{-4}$    | 4.4  | $^{+0.6}_{-0.5}$ | 36       |

Data in good agreement with background expectation

- Further selection cuts to optimize  $S/\sqrt{(S+B)}$ :
  - On plane H<sub>T</sub>+E<sub>T</sub><sup>miss</sup> vs m<sub>coll</sub>
  - On leading jet  $p_T$  and  $E_T^{miss}$
- Main systematics:
  - Jet energy scale
  - tt modeling: ISR/FSR
- Hypothesis testing: CL<sub>s</sub> method via MCLimit, no profiling of systematic uncertainties.
- Limit at 95% C.L.: m<sub>T</sub>>350 GeV (>335 GeV expected) Limits applicable to T→W<sup>+</sup>q (q=d,s,b), B→W<sup>-</sup>q (q=u,c) and Y→W<sup>-</sup>b.
- B-tagging requirement would give improved sensitivity at the expense of greater model-dependence.



 $T\overline{T} \rightarrow tA_0 tA_0 (t\overline{t} + E_T^{miss})$ 



- Signature:  $I + E_T^{miss} + \ge 4$  jets (I=e, $\mu$ )
- Event selection:
  - =1 e/μ, p<sub>T</sub>(e)>25 GeV, p<sub>T</sub>(μ)>20 GeV
     2<sup>nd</sup> lepton/isolated track veto
  - E<sub>T</sub><sup>miss</sup>>100 GeV
  - M<sub>T</sub>(W)>150 GeV
  - $\geq$ 4 jets with p<sub>T</sub>>25 GeV, |η|<2.5
- Background: dominated by dileptonic tt
   (modeled with MC@NLO), followed by
   single-lepton tt
   and W+jets (calibrated to
   data in low M<sub>T</sub>(W) region).
- Strategy:
  - Loose 2<sup>nd</sup> lepton veto to suppress dominant dileptonic tt background.
  - High  $E_t^{miss}$  and  $M_T(W)$  to suppress single-lepton tt and W+jets.
  - Cut-and-count analysis.



#### PRL 108. 041805 (2012

### $T\overline{T} \rightarrow tA_0 tA_0 (t\overline{t} + E_T^{miss})$

- Observable: total yield after selection.
- Dominant systematic uncertainties:
  - Jet energy scale
  - 2<sup>nd</sup> lepton veto in dileptonic tt
  - Single-lepton backgrounds at high  $M_T(W)$
- Hypothesis testing: Bayesian method using MCLimit.
- Limit at 95% C.L.:  $m_T$ >420 GeV (for  $m_{A0}$ =10 GeV)  $m_T$ >370 GeV (for  $m_{A0}$ =140 GeV) No sensitivity yet for scalar models (~x6 lower  $\sigma$ ).

Search could be applied to  $T\overline{T} \rightarrow WbZt$ , ZtZt̄ (w/ Z $\rightarrow vv$ ) or  $T\overline{T} \rightarrow Wbht$ , htht̄ (h $\rightarrow$ invisible).

#### Data in good agreement with background expectation

| Source                                | Number of events |
|---------------------------------------|------------------|
| Dilepton $t\overline{t}$              | $62 \pm 15$      |
| Single-lepton $t\overline{t}/W$ +jets | $33.1 \pm 3.8$   |
| Multi-jet                             | $1.2 \pm 1.2$    |
| Single top                            | $3.5\pm0.8$      |
| Z+jets                                | $0.9 \pm 0.3$    |
| Dibosons                              | $0.9 \pm 0.2$    |
| Total                                 | $101 \pm 16$     |
| Data                                  | 105              |



### $T\overline{T} \rightarrow tA_0 tA_0 (t\overline{t} + E_t^{miss})$

- Observable: total yield after selection.
- Dominant systematic uncertainties:
  - Jet energy scale
  - 2<sup>nd</sup> lepton veto in dileptonic tt
  - Single-lepton backgrounds at high  $M_T(W)$
- Hypothesis testing: Bayesian method using MCLimit.
- Limit at 95% C.L.:  $m_T$ >420 GeV (for  $m_{A0}$ =10 GeV)  $m_T$ >370 GeV (for  $m_{A0}$ =140 GeV) No sensitivity yet for scalar models (~x6 lower  $\sigma$ ).

Search could be applied to  $T\overline{T} \rightarrow WbZt$ , ZtZt̄ (w/ Z $\rightarrow vv$ ) or  $T\overline{T} \rightarrow Wbht$ , htht̄ (h $\rightarrow$ invisible).

#### Data in good agreement with background expectation

| Source                                | Number of events |
|---------------------------------------|------------------|
| Dilepton $t\overline{t}$              | $62 \pm 15$      |
| Single-lepton $t\overline{t}/W$ +jets | $33.1 \pm 3.8$   |
| Multi-jet                             | $1.2 \pm 1.2$    |
| Single top                            | $3.5\pm0.8$      |
| Z+jets                                | $0.9\pm0.3$      |
| Dibosons                              | $0.9 \pm 0.2$    |
| Total                                 | $101 \pm 16$     |
| Data                                  | 105              |



## Down-type quarks

### BB→WtWt (lepton+jets)



- Signature:  $I + E_T^{miss} + \ge 6$  jets ( $I=e,\mu$ )
- Event selection:
  - =1 e/μ, p<sub>T</sub>(e)>25 GeV, p<sub>T</sub>(μ)>20 GeV
  - e(μ)+jets: E<sub>T</sub><sup>miss</sup>>35(20) GeV
  - E<sub>T</sub><sup>miss</sup>+M<sub>T</sub>(W)>60 GeV
  - $\geq 6$  jets with  $p_T > 25$  GeV,  $|\eta| < 2.5$
- Background: dominated by tt+jets (modeled with ALPGEN up to 3 explicit partons).
   W+jets next most important background.
- Strategy:
  - High jet multiplicity requirement to suppress background.
  - Identify high-p<sub>T</sub> W→qq̄' bosons via invariant mass of nearby jets.



### BB→WtWt (lepton+jets)

- Hadronic W boson identification:
  - Consider jet pairs with  $\Delta R(j,j) < 1.0$ .
  - Count number of such jet pairs with invariant mass in 70-100 GeV range (N<sub>W</sub>).
  - → ~80% efficient for W→jj decays with p<sub>T</sub>(W)>250 GeV.
- Background modeling validated in several signal-depleted control samples.





### BB→WtWt (lepton+jets)

- Observable: distribution of number of hadronic W boson candidates (0,1,≥2) in 3 different N<sub>jet</sub> bins (6, 7, ≥8).
- Dominant systematic uncertainties:
  - W+jets normalization
  - tī modeling: ISR/FSR,
  - Jet energy scale (\*)
     (\*) Not profiled
- Hypothesis testing: CL<sub>s</sub> method via MCLimit, profiling of (some) systematic uncertainties.
- Limit at 95% C.L.:  $m_B>480 \text{ GeV} (>470 \text{ GeV expected})$ Limits applicable to  $B \rightarrow W^-t$  (Q=-1/3) and  $X \rightarrow W^+t$  (Q=+5/3).

#### Data in good agreement with background expectation



### BB→WtWt (SS dilepton+jets)



- Signature:  $I^{\pm}I'^{\pm} + E_T^{miss} + \ge 2$  jets  $(I, I'=e, \mu)$
- Event pre-selection:
  - ≥2 same-sign leptons: ee, μμ or eμ
  - p<sub>T</sub>(e)>25 GeV, p<sub>T</sub>(μ)>20 GeV
  - $\geq 2$  jets with  $p_T > 20$  GeV,  $|\eta| < 2.5$
  - ee/ $\mu\mu$  only: M<sub>II</sub>>15GeV, |M<sub>II</sub>-M<sub>Z</sub>|>10 GeV
  - $E_T^{miss} > 40 \text{ GeV}$
  - H<sub>T</sub>>350 GeV
- Backgrounds:
  - Physics: dibosons (real leptons)
  - Instrumental: tt+jets, W+jets (one fake lepton or charge flip)
    - $\rightarrow$  estimated from data
- Strategy:
  - Low-background search, main issue is accurate instrumental bckg estimation.
  - Cut-and-count analysis.



### BB→WtWt (SS dilepton+jets)

- Observable: total yield after selection.
   Analyze separately different lepton channels as well as charge configurations (l<sup>+</sup>l<sup>+</sup> background > l<sup>-</sup>l<sup>-</sup> background).
- Dominant systematic uncertainties:
  - Jet energy scale and resolution
  - Fake lepton background
  - Charge flip background

#### Data in good agreement with background expectation

|                                              | $e^+e^+$                                                                                                                                    | $\mu^+\mu^+$                                                                                                                                                                         | $e^+\mu^+$                                                                                                                                                                                                 |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fake                                         | $0.8 \pm 0.6^{+0.2}_{-0.4}$                                                                                                                 | $1.0 \pm 0.3^{+0.6}_{-0.4}$                                                                                                                                                          | $3.3 \pm 1.1^{+1.6}_{-1.4}$                                                                                                                                                                                |
| Charge flip                                  | $0.3 \pm 0.1^{+0.3}_{-0.1}$                                                                                                                 | $0\pm0^{+0.01}_{-0.0}$                                                                                                                                                               | $0.4 \pm 0.1^{+0.3}_{-0.1}$                                                                                                                                                                                |
| Real                                         | $1.9\pm0^{+0.7}_{-1.5}$                                                                                                                     | $1.6\pm0^{+0.7}_{-0.9}$                                                                                                                                                              | $4.4\pm0^{+1.3}_{-3.1}$                                                                                                                                                                                    |
| Total                                        | $3.0 \pm 0.6^{+0.8}_{-1.5}$                                                                                                                 | $2.6\pm0.3^{+0.9}_{-1.1}$                                                                                                                                                            | $8.1 \pm 1.1^{+2.2}_{-3.4}$                                                                                                                                                                                |
| Data                                         | 2                                                                                                                                           | 1                                                                                                                                                                                    | 10                                                                                                                                                                                                         |
| $b'~450~{ m GeV}$                            | $1.8\pm0\pm0.3$                                                                                                                             | $2.7\pm0\pm0.4$                                                                                                                                                                      | $5.0\pm0\pm0.7$                                                                                                                                                                                            |
|                                              |                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                                            |
|                                              |                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                                            |
|                                              | $e^-e^-$                                                                                                                                    | $\mu^-\mu^-$                                                                                                                                                                         | $e^-\mu^-$                                                                                                                                                                                                 |
| Fake                                         | $e^-e^ 0.2 \pm 0.3 \pm 0.1$                                                                                                                 | $\mu^-\mu^-$ 0.7 $\pm$ 0.3 $^{+0.6}_{-0.3}$                                                                                                                                          | $\frac{e^-\mu^-}{0.5\pm0.2^{+0.7}_{-0.3}}$                                                                                                                                                                 |
| Fake<br>Charge flip                          | $\begin{array}{c} e^{-}e^{-}\\ 0.2\pm0.3\pm0.1\\ 0.3\pm0.1^{+0.3}_{-0.1}\end{array}$                                                        | $\begin{array}{c} \mu^{-}\mu^{-} \\ 0.7 \pm 0.3 \substack{+0.6 \\ -0.3 \\ 0 \pm 0 \substack{+0.01 \\ -0} \end{array}$                                                                | $\begin{array}{r} e^{-}\mu^{-} \\ 0.5 \pm 0.2 \substack{+0.7 \\ -0.3} \\ 0.3 \pm 0.1 \substack{+0.2 \\ -0.1} \end{array}$                                                                                  |
| Fake<br>Charge flip<br>Real                  | $\begin{array}{c} e^-e^-\\ 0.2\pm 0.3\pm 0.1\\ 0.3\pm 0.1^{+0.3}_{-0.1}\\ 0.8\pm 0^{+0.3}_{-0.6}\end{array}$                                | $\begin{array}{c} \mu^{-}\mu^{-} \\ 0.7 \pm 0.3 \substack{+0.6 \\ -0.3} \\ 0 \pm 0 \substack{+0.01 \\ -0} \\ 1.0 \pm 0 \substack{+0.4 \\ -0.6} \end{array}$                          | $\begin{array}{c} e^-\mu^- \\ 0.5\pm 0.2\substack{+0.7\\-0.3}\\ 0.3\pm 0.1\substack{+0.2\\-0.1}\\ 2.3\pm 0\substack{+0.8\\-1.9} \end{array}$                                                               |
| Fake<br>Charge flip<br>Real<br>Total         | $\begin{array}{c} e^-e^-\\ 0.2\pm0.3\pm0.1\\ 0.3\pm0.1^{+0.3}_{-0.1}\\ 0.8\pm0^{+0.3}_{-0.6}\\ 1.4\pm0.3^{+0.4}_{-0.6}\end{array}$          | $\begin{array}{c} \mu^{-}\mu^{-} \\ 0.7 \pm 0.3 \substack{+0.6 \\ -0.3} \\ 0 \pm 0 \substack{+0.01 \\ -0} \\ 1.0 \pm 0 \substack{+0.4 \\ -0.6} \\ 1.7 \pm 0.3 \pm 0.7 \end{array}$   | $\begin{array}{r} e^{-}\mu^{-} \\ 0.5 \pm 0.2 \substack{+0.7 \\ -0.3} \\ 0.3 \pm 0.1 \substack{+0.2 \\ -0.1} \\ 2.3 \pm 0 \substack{+0.8 \\ -1.9} \\ 3.1 \pm 0.2 \substack{+1.1 \\ -1.9} \end{array}$      |
| Fake<br>Charge flip<br>Real<br>Total<br>Data | $\begin{array}{c} e^-e^-\\ 0.2\pm 0.3\pm 0.1\\ 0.3\pm 0.1^{+0.3}_{-0.1}\\ 0.8\pm 0^{+0.3}_{-0.6}\\ 1.4\pm 0.3^{+0.4}_{-0.6}\\ 1\end{array}$ | $\begin{array}{c} \mu^{-}\mu^{-} \\ 0.7 \pm 0.3 \substack{+0.6 \\ -0.3 \\ 0 \pm 0 \substack{+0.01 \\ -0 \\ 1.0 \pm 0 \substack{+0.4 \\ -0.6 \\ 1.7 \pm 0.3 \pm 0.7 \\ 2 \end{array}$ | $\begin{array}{r} e^{-}\mu^{-} \\ 0.5 \pm 0.2 \substack{+0.7 \\ -0.3} \\ 0.3 \pm 0.1 \substack{+0.2 \\ -0.1} \\ 2.3 \pm 0 \substack{+0.8 \\ -1.9} \\ 3.1 \pm 0.2 \substack{+1.1 \\ -1.9} \\ 2 \end{array}$ |





### BB→WtWt (SS dilepton+jets)

- Observable: total yield after selection.
   Analyze separately different lepton channels as well as charge configurations (I<sup>+</sup>I<sup>+</sup> background > I<sup>-</sup>I<sup>-</sup> background).
- Dominant systematic uncertainties:
  - Jet energy scale and resolution
  - Fake lepton background
  - Charge flip background
- Hypothesis testing: CL<sub>s</sub> method via Collie, no profiling of systematic uncertainties.
- Limit at 95% C.L.:  $m_B>450 \text{ GeV} (>450 \text{ GeV expected})$ Limits applicable to  $B \rightarrow W^-t$  (Q=-1/3) and  $X \rightarrow W^+t$  (Q=+5/3).

→ comparable sensitivity to lepton+jets!

#### Data in good agreement with background expectation

|                                              | $e^+e^+$                                                                                                                               | $\mu^+\mu^+$                                                                                                                                                                            | $e^+\mu^+$                                                                                                                                                                                                |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fake                                         | $0.8 \pm 0.6^{+0.2}_{-0.4}$                                                                                                            | $1.0\pm0.3^{+0.6}_{-0.4}$                                                                                                                                                               | $3.3 \pm 1.1^{+1.6}_{-1.4}$                                                                                                                                                                               |
| Charge flip                                  | $0.3\pm0.1^{+0.3}_{-0.1}$                                                                                                              | $0\pm0^{+0.01}_{-0.0}$                                                                                                                                                                  | $0.4 \pm 0.1^{+0.3}_{-0.1}$                                                                                                                                                                               |
| Real                                         | $1.9\pm0^{+0.7}_{-1.5}$                                                                                                                | $1.6\pm0^{+0.7}_{-0.9}$                                                                                                                                                                 | $4.4\pm0^{+1.3}_{-3.1}$                                                                                                                                                                                   |
| Total                                        | $3.0 \pm 0.6^{+0.8}_{-1.5}$                                                                                                            | $2.6\pm0.3^{+0.9}_{-1.1}$                                                                                                                                                               | $8.1 \pm 1.1 \substack{+2.2 \\ -3.4}$                                                                                                                                                                     |
| Data                                         | 2                                                                                                                                      | 1                                                                                                                                                                                       | 10                                                                                                                                                                                                        |
| $b'~450~{\rm GeV}$                           | $1.8\pm0\pm0.3$                                                                                                                        | $2.7\pm0\pm0.4$                                                                                                                                                                         | $5.0\pm0\pm0.7$                                                                                                                                                                                           |
|                                              |                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                           |
|                                              |                                                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                           |
|                                              | $e^-e^-$                                                                                                                               | $\mu^-\mu^-$                                                                                                                                                                            | $e^-\mu^-$                                                                                                                                                                                                |
| Fake                                         | $e^-e^ 0.2 \pm 0.3 \pm 0.1$                                                                                                            | $\frac{\mu^-\mu^-}{0.7\pm0.3^{+0.6}_{-0.3}}$                                                                                                                                            | $\frac{e^-\mu^-}{0.5\pm0.2^{+0.7}_{-0.3}}$                                                                                                                                                                |
| Fake<br>Charge flip                          | $\begin{array}{c} e^-e^-\\ 0.2\pm 0.3\pm 0.1\\ 0.3\pm 0.1^{+0.3}_{-0.1}\end{array}$                                                    | $\begin{array}{c} \mu^{-}\mu^{-} \\ 0.7 \pm 0.3 \substack{+0.6 \\ -0.3 \\ 0 \pm 0 \substack{+0.01 \\ -0} \end{array}$                                                                   | $\frac{e^-\mu^-}{0.5\pm0.2^{+0.7}_{-0.3}}\\ 0.3\pm0.1^{+0.2}_{-0.1}$                                                                                                                                      |
| Fake<br>Charge flip<br>Real                  | $\begin{array}{c} e^-e^-\\ 0.2\pm 0.3\pm 0.1\\ 0.3\pm 0.1^{+0.3}_{-0.1}\\ 0.8\pm 0^{+0.3}_{-0.6}\end{array}$                           | $\begin{array}{c} \mu^{-}\mu^{-} \\ 0.7 \pm 0.3 \substack{+0.6 \\ -0.3} \\ 0 \pm 0 \substack{+0.01 \\ -0} \\ 1.0 \pm 0 \substack{+0.4 \\ -0.6} \end{array}$                             | $\begin{array}{c} e^-\mu^- \\ 0.5\pm 0.2\substack{+0.7\\-0.3}\\ 0.3\pm 0.1\substack{+0.2\\-0.1}\\ 2.3\pm 0\substack{+0.8\\-1.9} \end{array}$                                                              |
| Fake<br>Charge flip<br>Real<br>Total         | $\begin{array}{c} e^-e^-\\ 0.2\pm0.3\pm0.1\\ 0.3\pm0.1^{+0.3}_{-0.1}\\ 0.8\pm0^{+0.3}_{-0.6}\\ 1.4\pm0.3^{+0.4}_{-0.6}\end{array}$     | $\begin{array}{c} \mu^{-}\mu^{-} \\ 0.7 \pm 0.3 \substack{+0.6 \\ -0.3} \\ 0 \pm 0 \substack{+0.01 \\ -0} \\ 1.0 \pm 0 \substack{+0.4 \\ -0.6} \\ 1.7 \pm 0.3 \pm 0.7 \end{array}$      | $\begin{array}{r} e^-\mu^- \\ 0.5\pm 0.2\substack{+0.7\\-0.3}\\ 0.3\pm 0.1\substack{+0.2\\-0.1}\\ 2.3\pm 0\substack{+0.8\\-1.9}\\ 3.1\pm 0.2\substack{+1.1\\-1.9} \end{array}$                            |
| Fake<br>Charge flip<br>Real<br>Total<br>Data | $\begin{array}{c} e^-e^-\\ 0.2\pm0.3\pm0.1\\ 0.3\pm0.1^{+0.3}_{-0.1}\\ 0.8\pm0^{+0.3}_{-0.6}\\ 1.4\pm0.3^{+0.4}_{-0.6}\\ 1\end{array}$ | $\begin{array}{c} \mu^{-}\mu^{-} \\ 0.7 \pm 0.3 \substack{+0.6 \\ -0.3} \\ 0 \pm 0 \substack{+0.01 \\ -0} \\ 1.0 \pm 0 \substack{+0.4 \\ -0.6} \\ 1.7 \pm 0.3 \pm 0.7 \\ 2 \end{array}$ | $\begin{array}{r} e^{-}\mu^{-} \\ 0.5 \pm 0.2 \substack{+0.7 \\ -0.3} \\ 0.3 \pm 0.1 \substack{+0.2 \\ -0.1} \\ 2.3 \pm 0 \substack{+0.8 \\ -1.9} \\ 3.1 \pm 0.2 \substack{+1.1 \\ -1.9 \\ 2 \end{array}$ |



# tt Resonances

### tt Resonances: Introduction

- Many models of New Physics predict tt resonances.
   Current searches focus on two benchmarks:
  - Leptophobic Topcolor Z' as proxy for "narrow" resonances.
  - Randall-Sundrum KK gluon as proxy for "wide" resonances.
- For very massive resonances W boson and even top decay products can be reconstructed as single "fat jet" ("boosted topology").
- Searches presented here correspond to (mostly) "resolved topologies".
  - Similar acceptance to "boosted topologies" beyond ~1 TeV, much higher acceptance for lower masses.
  - Acceptance drops at high mass because of lepton isolation (both types of searches).



### tt Resonances (lepton+jets)



ATLAS-CONF-2012-029

- Signature:  $I + E_T^{miss} + \ge 4$  jets (I=e, $\mu$ )
- Event selection:
  - =1 e/μ, p<sub>T</sub>(e/μ)>25 GeV
  - e+jets: E<sub>T</sub><sup>miss</sup>>35 GeV, M<sub>T</sub>(W)>25 GeV
  - $\mu$ +jets: E<sub>T</sub><sup>miss</sup>>20 GeV, E<sub>T</sub><sup>miss</sup>+M<sub>T</sub>(W)>60 GeV
  - If one jet has mass m<sub>jet</sub>>60 GeV:
     ≥3 jets with p<sub>T</sub>>25 GeV, |η|<2.5</li>

else

- $\geq$ 4 jets with p<sub>T</sub>>25 GeV, |η|<2.5
- Leading jet  $p_T$ >60 GeV
- ≥1 b-tagged jets
- Background: dominated by tt+jets (modeled with MC@NLO).



|                                  | Electron channel | Muon channel   |
|----------------------------------|------------------|----------------|
| tī                               | 7830 ±750        | 10000 ± 960    |
| Single top                       | 470 ± 50         | $570 \pm 60$   |
| W plus jets                      | $1120 \pm 540$   | $1450 \pm 700$ |
| Z plus jets                      | $85 \pm 40$      | 90 ± 45        |
| Diboson                          | 18 ± 1           | 18 ± 1         |
| Multijet                         | $350 \pm 170$    | $470 \pm 240$  |
| Total expected                   | 9860 ± 940       | 12600 ± 1210   |
| Data observed                    | 9622             | 12706          |
| Z', m = 800  GeV                 | 200              | 224            |
| $g_{\rm KK}, m = 1300 {\rm GeV}$ | 59               | 65             |

### tī Resonances (lepton+jets)

- tt Mass reconstruction:
  - $p_z(v)$  via W mass constraint (quadratic eq):
    - If no real solution, E<sub>T</sub><sup>miss</sup> adjusted to get null discriminant
    - If two solutions, pick smallest  $|p_z(v)|$
  - Events without a jet with m<sub>jet</sub>>60 GeV
    - $\rightarrow$  no assignment of jets to top or anti-top:
    - 3 or 4 hardest jets added to leptonic W
    - Jets compatible with ISR (far from other objects) excluded
  - Events with a jet with  $m_{iet}$  >60 GeV:
    - Form hadronic top quark candidate by combining massive jet with closest jet
    - Form leptonic top quark candidate by combining leptonic W with closest jet
- Dominant shape systematic uncertainties:
  - B-tagging efficiency (~16-19%)
  - Jet energy scale (3-4%)
  - ISR/FSR (8.5%)



0.1

0.05

-1000

1000

500

### tt Resonances (lepton+jets)



Hypothesis testing: Bayesian method

#### Leptophobic Z' (Γ/M=1.2%)







#### **KK Gluon**



### tī Resonances (dilepton+jets)



- Signature:  $I^+I'^- + E_T^{miss} + \ge 2$  jets  $(I, I'=e, \mu)$
- Event pre-selection:
  - =2 opposite-sign leptons: ee, μμ or eμ
  - p<sub>T</sub>(e)>25 GeV, p<sub>T</sub>(μ)>20 GeV
  - $\geq$ 2 jets with p<sub>T</sub>>25 GeV, |η|<2.5
  - $e\mu$ -only:  $H_T$ >130 GeV
  - ee/μμ-only:
    - M<sub>II</sub>>15GeV, |M<sub>II</sub>-M<sub>Z</sub>|>10 GeV
    - $E_t^{miss} > 40 \text{ GeV}$
- Background:
  - Dominated by tt+jets (modeled with MC@NLO).
  - Z+jets background normalized using data-driven techniques.



#### ATLAS-CONF-2011-123

### tt Resonances (dilepton+jets)

- tt mass reconstruction not possible due to missing neutrinos.
  - → Use  $H_T$ + $E_T^{miss}$  as observable instead.
- Dominant shape syst. uncertainties:
  - Jet energy scale
  - tt modeling: ISR/FSR,
     NLO generator,
     fragmentation model
- Hypothesis testing: Bayesian method

Expected

0.80

0.88

0.95

1.02

Mass Limit (TeV)

Observed

0.84

0.88

0.92

0.96

• Limits at 95% C.L.:

 $g_{qqg_{KK}}/g_s$ 

-0.20

-0.25

-0.30

-0.35



### **Summary and Conclusions**

- Wide range of searches for pair-production of exotic heavy quarks ongoing in ATLAS, reaching sensitivities of ~400-500 GeV with 1 fb<sup>-1</sup> of data at √s= 7 TeV.
   Still, much ground remains to be covered, both in terms of additional search channels as well as combination and interpretation of results.
- Searches for tt
   resonances in (mostly) "resolved topologies" reaching sensitivities to masses up to 1.0 TeV with ≤2 fb<sup>-1</sup> of data at √s= 7 TeV.

   Entering era of "boosted top" analyses.
- Very exciting prospects ahead!
  - Up to x5 increase in statistics from analyses using full 2011 dataset. Also re-optimized/broader scope analyses and new channels!
  - At least 15 fb<sup>-1</sup> at  $\sqrt{s}=8$  TeV by the end of 2012.



# Backup

### **ATLAS Detector**

44m



• Let's consider the "more generic" scenario of vector-like quarks and take a look at what signatures/scenarios are being probed by the existing dedicated searches.

|                  |                  | T <sub>S</sub> | <b>B</b> <sub>S</sub> | TB <sub>d</sub> | XT <sub>d</sub> | BY <sub>d</sub> |
|------------------|------------------|----------------|-----------------------|-----------------|-----------------|-----------------|
|                  | 41 (2Z)          | TT             | BB                    | TT,BB           | TT              | BB              |
| 7                | 41 (1Z)          | TT             | BB                    | TT,BB           | TT              | BB              |
| 4 leptons        | 41 (0Z)          | TT             | BB                    | TT,BB           | TT,XX           | BB              |
|                  | 31 (1Z)          | TT             | BB                    | TT,BB           | TT              |                 |
| 3 leptons        | 31 (0Z)          | TT             | BB                    | TT,BB           | TT,XX           |                 |
|                  | $l^{+}l^{-}(1Z)$ | TT             | BB                    | TT,BB           | TT              | BB              |
| OS dileptons 🧖   | l+l- (0Z)        | TT             | BB                    | TT,BB           | TT,XX           | BB,YY           |
| SS dileptons ->- | ]±]±             |                | BB                    | BB              | XX              |                 |

• Of course, some of them are more challenging or powerful than others...

• Let's consider the "more generic" scenario of vector-like quarks and take a look at what signatures/scenarios are being probed by the existing dedicated searches.



• <u>Obvious omission</u>: trilepton searches have sensitivity comparable to the most powerful channels and often allow to identify the new quark.

• Let's consider the "more generic" scenario of vector-like quarks and take a look at what signatures/scenarios are being probed by the existing dedicated searches.

|               |                                    | T <sub>s</sub> | <b>B</b> <sub>S</sub> | TB <sub>d</sub> | XT <sub>d</sub> | BY <sub>d</sub> |
|---------------|------------------------------------|----------------|-----------------------|-----------------|-----------------|-----------------|
| lepton+jets - | $l^{\pm}(1V_{had},2b)$             | TT             |                       | TT              | TT              | YY              |
|               | $l^{\pm}$ (>1V <sub>had</sub> ,2b) |                | BB                    | BB              | XX              |                 |
|               | l± (4b)                            | TT             | BB                    | TT,BB           | TT              |                 |
|               | l± (6b)                            | TT             |                       | TT              | TT              |                 |
| multi-b-jets  | Multijet (4b)                      | TT             | BB                    | TT,BB           | TT              | BB              |
|               | Multijet (6b)                      | TT             | BB                    | TT,BB           | TT              | BB              |

• Of course, some of them are more challenging or powerful than others...

• Let's consider the "more generic" scenario of vector-like quarks and take a look at what signatures/scenarios are being probed by the existing dedicated searches.



- <u>Obvious omissions</u>:
  - Searches targeting FCNC decays: Q→Hq, Zq, needed to maximize sensitivity to a VLQ (pure CC decays are ≤25% of total decay rate) and to establish unambiguously VLQ nature of any discovered heavy quark.
  - Multijet/multi-b searches: challenging but very interesting in their own!

### **Producing "Model-Indep" Results?**

- For the most part our searches so far have been, not only model-dependent, but often in the context of unrealistic models, e.g.:
  - Assume BR=1 for particular heavy quark decay modes.
  - Neglect additional signals that would be present in any realistic model (e.g. in 4<sup>th</sup> gen models there are two quarks, not one which in principle can contribute in the signal region depending on the final event selection and observable used).
- Given the large number of possible signatures to explore, it's hard to imagine we can in general design "model-indep" searches for VLQs, but we can sometimes alleviate some of the model assumptions by carefully designing the search.

<u>A good example</u>:  $QQ \rightarrow Zb + X$ 

- Leptonic Z allows to focus on Q decay modes containing Z bosons with small contamination from other decay modes.
- Reconstructed Zb system "enough" to suppress backgrounds and build a sensitive observable so don't really need to look at the "rest of the event".

Designing event selections which are very inefficient for most but a subset of decay modes may also be a way to have a "cleaner" interpretation (e.g. SS dileptons mainly sensitive to B/X quarks, I+6 b-tag searches only sensitive to  $T \rightarrow tH$ , etc).

 In the case of 4<sup>th</sup> gen models, it's possible to relax assumptions on the V<sub>Qq</sub> elements (e.g. by not using b-tagging requirements or producing limits on BR vs m<sub>Q</sub> plane).

### **Towards a Combined Search**

- This seems a better idea than performing "inclusive searches" since:
  - The result is going to be model-dependent anyway.
  - Can make use of existing analysis efforts as inputs.
  - Will at the end have better sensitivity.

But not so quick....

- Since multiple analyses would have to be combined there is a higher degree of coordination required:
  - Ensure orthogonality of selections
  - Ensure all searches use the same set of signals
  - The combination is made difficult unless all searches use similar background predictions (e.g. ttbar MC@NLO vs ALPGEN), assign consistent set of systematics, provide inputs in same format, etc.
- But this may well be a worthy effort as the discovery of exotic heavy quarks may require to combine multiple channels. With or without signals, deriving constraints on model parameter space and/or model discrimination will require the ability to produce such combination.