
Problem I.1

A cylindrical hoop of zero thickness, mass M , and radius R has a point mass m attached to
its circumference. The hoop rolls without sliding along a horizontal plane under the influence
of gravity (the gravitational acceleration is g).

M

mR θ

(a) [5 points] Show that the kinetic energy of the system is

K = MR2θ̇2 +mR2θ̇2(1− cos θ), (1)

where θ is the angle between the vertical direction and the line connecting the center
of the hoop to the mass m.

(b) [5 points] Obtain the Lagrangian of the system and the equation of motion for the
variable θ.

(c) [5 points] Keeping terms up to order θ and θ̇ in the equation of motion, determine the
frequency ω of small oscillations around the equilibrium position. What is the behavior
of ω in the small M limit?

(d) [5 points] Return to part (b) and explicitly setM = 0. What is the equation of motion
for small oscillations in this case? How does the frequency depend on the amplitude
θ0?

(e) [5 points] The frequency obtained in the limit M → 0 in parts (c) and (d) are dif-
ferent. Examine the implicit assumptions made in each case to reconcile this apparent
discrepancy.
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Problem I.2

In the so-called “Lorentz model” of electromagnetic wave propagation in gases, dielectrics,
conductors and plasmas, bound electrons are approximately described as a collection of
uncoupled harmonic oscillators driven by an external electric field E . The binding frequency
of the oscillator is ΩB, and the mean electron density is N atoms/cm3. Ignoring magnetic
effects, the corresponding harmonic oscillator model equation is(

∂2

∂ t2
+ Ω2

B

)
δx =

q

m
E(r, t), (1)

where δx denotes the electron’s displacement from equilibrium.

(a) [5 points] Laser light with frequency ω in the optical regime propagates in the medium.
Assuming the wavelength is long compared to atomic dimensions, use Eq. 1 to write
an expression for the electric susceptibility χ(ω), which relates the polarization and
electric fields via P = ε0χE.

(b) [5 points] Write the expression for the permittivity (dielectric constant) of the medium
at the laser field frequency.

(c) [4 points] Sketch the permittivity ε(ω) as a function of ω near the binding frequency
ΩB. Using this dielectric constant in the dispersion relation for electromagnetic waves,
describe the physical consequences for wave propagation in the distinct regimes you
see.

(d) [4 points] In the case of a free electron, i.e., ΩB = 0, calculate the critical “plasma”
frequency ωp for which ε(ωp) = 0. Give numerical values for ωp for metals where
N = 1028 electrons/m3 and plasmas in the ionosphere where N = 1012 electrons/m3.
Use ε0 ≈ 10−11 F/m, m ≈ 10−30 kg, and q ≈ 10−19 C. Compare your results to the
frequency of visible light and comment on the consequences for incident light from the
sun.

(e) [3 points] Calculate the frequency-dependent group velocity vg(ω).

(f) [4 points] Estimate the maximum value of electric field beyond which this semi-
classical model breaks down. Your answer should be in terms of electronic charge q,
the electron mass m, the electronic binding frequency ΩB and the atomic lengthscale
(Bohr radius, aB).
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Problem I.3

A three-dimensional cubic lattice of spin-1/2 atoms is a model of a ferromagnet. A simplified
Hamiltonian for this system can be written as

H = −J
∑
〈i,j〉

σiσj − µBext

∑
i

σi, (1)

in which σi may assume only the values ±1, and the summation condition, 〈i, j〉, restricts
the sum to nearest neighbor pairs. The “exchange constant” J has dimensions of energy,
and Bext is an externally applied magnetic field that interacts with the magnetic moment µ
associated with the spin.

(a) [4 points] Convert Eq. 1 into a simplified “mean field” Hamiltonian by assuming all
neighboring σjs are replaced by their mean or average value σ̄ (statistical mechanical
or thermal average):

HMF = −µ
∑
i

σi(B̄ +Bext), (2)

What is B̄ in terms of J , µ, and σ̄? What is the magnetization per siteM in terms of σ̄?

(b) [3 points] Using the mean-field Hamiltonian HMF and the Boltzmann distribution for
the probabilities of σi = ±1, calculate the magnetization M as a function of B̄ +Bext,
M = F (B̄ +Bext).

(c) [3 points] Since B̄ is proportional to M the equation M = F (B̄ + Bext) is referred
to as the self-consistency equation for the mean-field theory. Using the answer to part
(b) and assuming Bext = 0, so that M ≡ F (B̄) can be considered to be a function of
B̄ ∝M , show that B̄ = 0 is always a solution to the self-consistency equation.

(At sufficiently large temperatures, this is the only real solution and is referred to as
the “paramagnetic” state, since it is the state with zero magnetization at zero external
field.)

(d) [5 points] Assume Bext = 0 for this part so that M = F (B̄). By expanding the right
hand side of this equation to order O(B̄3 ∝M3) show that there is more than one real
solution below a critical temperature Tc. What is Tc?

(The state with a non-zero magnetization at zero external field is referred to as the
“ferromagnetic” state.)

(e) [5 points] In the paramagnetic phase, compute the zero-field “mean-field” susceptibil-
ity i.e. χpm = ∂BextF (B̄ + Bext)|Bext=0. In general χ is a measure of the response of
the spin system to an external field. What is the behavior of χpm as T → Tc from
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above? How does this result show that the paramagnetic state becomes unstable at
Tc? The temperature Tc (calculated in (d)) is the transition temperature between the
paramagnetic and ferromagnetic state, i.e. the “Curie temperature”.
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Problem I.4

π0 mesons can be produced via the following type of reaction:

A+B → A+B + π0.

A study was performed where the incoming projectile, A, was a He3 particle (mA ' 3MN).
The stationary target, B, was C12 (mB ' 12MN) or Pb208 (mB ' 208MN). Here MN =
940MeV/c2. (Below we use units with c = 1.)

(a) [13 points] Obtain a relativistically correct expression for the projectile’s threshold
kinetic energy, required to produce the π0 meson, in terms of mA, mB and mπ.
If the He3 incident energy is 160MeV in the lab frame, show that π0 mesons (mπ =
0.14MN = 135MeV) can be produced only with the Pb208 target. Consider the projec-
tile and target as elementary particles.

Now suppose that a higher-energy He3 projectile is available. Use your calculation from part
(a) to answer the following:

(b) [12 points] The π0 mesons decay into two γ-rays with a proper half-life of τ =
2 × 10−16 s. At the threshold energy required for π0 production via the C12 tar-
get, determine the (lab frame) distance the mesons will travel in vacuum before half
of them decay. Numerical results should have units and need only be accurate to 15%.
Indicate why any approximations you make are of this 15% accuracy.

5



Problem I.5

The equations of particle number and momentum conservation of a gas are

∂ρ/∂t+∇ · (ρv) = 0,

∂v/∂t+ v · ∇v = −∇p
mρ

,

where m is the mass of a gas particle, ρ(x, t) is the particle number density, v(x, t) is the
velocity field, and p(x, t) is the gas pressure. We assume that the gas is ideal so that

p = ρKBT,

where T (x, t) is the temperature and KB is Boltzmann’s constant. (Viscosity has been
neglected in the above.)

(a) [7 points] Linearize these equations for small perturbations from a no-flow (v0 = 0),
time stationary, spatially homogeneous state, assuming that ρ(x, t) = ρ0 + ρ1(x, t),
v = v1(x, t), p(x, t) = p0 + p1(x, t) and T (x, t) = T0 + T1(x, t), where the quantities
with the subscript 1 are the small perturbations. Write the relations implied between
the perturbation quantities (ρ1, v1, p1, and T1).

(b) [6 points] Isaac Newton in his consideration of sound essentially assumed that T1 = 0.
Show that, with this assumption, the perturbed density ρ1 satisfies a wave equation of
the form

∇2ρ1 −
1

C2
N

∂2ρ1
∂t2

= 0,

and express Newton’s speed of sound CN in terms of the gas parameters.

(c) [6 points] Newton’s theoretical result for the speed of sound stood for about 125 years,
although experiments in ambient air clearly showed that it was too small. Laplace
finally reconciled this contradiction by hypothesizing that compression and rarefraction
of ambient air by audible sound waves was an adiabatic process,

p/ργ = (constant),

where γ is the usual ratio of specific heats. Show that this adiabatic hypothesis again
yields an equation of the form in part (b), but now with a different expression (give
it) for the sound speed. Denote this new expression for the sound speed by CL (where
the subscript L stands for Laplace). (CL agrees well with experiments in air.)

(d) [3 points] For air at room temperature, γ (the ratio of specific heats) is approximately
7/5. What is the ratio (CN/CL) by which Newton’s result underestimated the sound
speed in air?

(e) [3 points] Let ξ denote the thermal diffusivity of the gas (units of ξ = [length]2/[time]).
Considering sinusoidal sound waves of period τ and wavelength λ, under what condition
on ξ would Laplace’s adiabatic hypothesis be valid? Explain. Under what condition
on ξ would Newton’s isothermal assumption be valid?
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