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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

 

You may keep this packet with the questions after the exam. 

 



Problem II.1

A particle of mass m moves in a 3-dimensional potential

V (r) =

{
−V0, 0 < r < a

Ca2/r2, r > a

where r is the distance of the particle from the origin and the three constants C, a, and V0

are positive.
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(a) [7 points] Show that the zero-energy s-wave solutions of Schrödinger's equation in the
region r > a are of the form rν and r−ν−1, where ν is a positive real number.

(b) [6 points] Determine ν in terms of C, m, a, and ~. What is the appropriate radial
dependence of the wavefunction for r > a for a bound state of in�nitesimally small
binding energy?

(c) [6 points] Find a condition on V0 in terms of C,m, a, and ~ such that there is exactly
one bound s-wave state of in�nitesimally small binding energy.
Hint: to simplify the algebra, de�ne the rms momentum of the particle inside the well,
~k =

√
2mV0 and write the condition in terms of k.

(d) [6 points] V0 happens to be such that the rms momentum of the particle inside the
well is 3π~/4a. Find the numerical value of V0/C for this special case.
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Problem II.2

An electron of mass m moves in a one-dimensional attractive potential U(x) = −λδ(x),
where δ(x) is the Dirac delta function and λ > 0.

(a) [5 points] Find the wave function and the energy E0 of the bound state. What is the
parity of the wave function with respect to the operation x→ −x?

(b) [5 points] Find the wave functions and the energies of the unbound states which are
antisymmetric with respect to the parity operation x → −x. Because they are not
square-integrable, normalize them such that total |ψ|2 in one wavelength is unity.

For time t < 0, the electron is in the ground state of the potential. At time t = 0, a small
AC electric �eld E(t) = E0 sin(ωt) with frequency ω > |E0|/~ is turned on. The Hamiltonian
of the perturbation is

V = −2exE0 sin(ωt)

where e is the electron charge. The perturbation may cause a transition from the bound
state to one of the unbound states.

(c) [5 points] Calculate the nonvanishing matrix elements of the perturbation between
the ground state and the unbound states.

(d) [5 points] Using the Fermi golden rule, calculate the transition rate. Make sure the
dimensionality of your �nal result is 1/time.

(e) [5 points] Sketch how the ionization rate depends on the frequency ω.

Potentially useful:
∫∞

0
dx x sin(ax)e−bx = 2ab

(a2+b2)2
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Problem II.3

A particle of mass m is moving in a repulsive potential

V (r) = V0
a2

r2
, V0 > 0.

(a) [3 points] Write out the radial part of the Schrödinger equation.

(b) [10 points] The spatial dependence of the potential invites a variable substitution
that transforms the answer from part (a) into an equation resembling the free-particle
equation. Use such a substitution to �nd an exact expression for the partial wave phase
shift, δ`.

(c) [4 points] Show that for 8mV0a
2/~� 1 the phase shift can be approximated by

δ` = − πmV0a
2

~2(2`+ 1)
.

(d) [8 points] In the same approximation, �nd an expression for the scattering amplitude
in closed form.

Potentially useful:

• Asymptotic form of the spherical Bessel function: lim
x→∞

jν(x) =
sin(x− νπ/2)

x
.

Note that ν does not have to be an integer.

• The asymptotic form of eik·r is:
∞∑
`=0

(2`+ 1)i`
sin(kr − `π/2)

kr
P`(cos θ).

Here, θ is the angle between the vectors k and r .

• Also:
∞∑
`=0

P`(cos θ) =
1

2 sin(θ/2)
.

3



Problem II.4

The �spin-orbit� interaction for a spin-1/2 particle is

HSO =
~

4m2c2
∇V × p̂ · σ.

(a) [2 points] Recast this expression in terms of the vector components of ∇V , p̂, and σ.

Now consider an electron bound to a central potential V (r), in a state with orbital quantum
number ` = 1. In the following, it is convenient to use the real-valued orbital wavefunction
basis {ψx, ψy, ψz} (where the ψx,y,z are linear combinations of |` = 1,m = ±1, 0〉 that
transform like the x, y, z polar vector components).

(b) [4 points] Use spatial symmetry properties to �nd which term in your answer to (a)
contributes to a nonzero matrix element 〈ψy ↑ |HSO|ψz ↓〉 = iδ, where δ is a constant
common to all non-zero elements of HSO in this basis (and depends on the details of
V (r)). Why is 〈ψy ↑ |HSO|ψz ↑〉 = 0, whereas 〈ψy ↑ |HSO|ψx ↑〉 6= 0?

(c) [4 points] Evaluate all the matrix elements of HSO in the {ψx, ψy, ψz} basis in terms
of the common factor δ, and express HSO as a 3 × 3 matrix of the appropriate 2 × 2
Pauli σ matrices.

(d) [10 points] Find the eigenvalues of HSO, and show that they correspond to the j =
(` + s = 3/2), (` − s = 1/2) subspaces. Hint: Find the characteristic equation either
by re-arranging the orbital ⊗ spin basis to express HSO as 3 ⊕ 3 block diagonal, or
employ the block determinant rules and Pauli commutation relations.

Now consider a perturbation whose angular dependence transforms as

x2 + y2 − 2z2.

(e) [5 points] Describe how the j = 3/2 levels are split under the action of the perturba-
tion. [No explicit calculation of matrix elements is needed, and this problem can be
solved independently of the previous (a)-(d)].
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Problem II.5

(a) [5 points] Using Newtonian gravity and classical mechanics, �nd the escape velocity
from a spherically symmetric object of mass M and radius R. If the escape velocity is
greater than the speed of light c, the object is a Newtonian �black hole�. For a given
mass M , express the maximum (or Schwarzschild) radius RS in terms of M .

(b) [5 points] Hawking has predicted that a black hole is not really black, but radiates
like a hot body at temperature TH ; the typical photon emitted has a wavelength close
to the black hole radius. Estimate TH in terms of M,G, c, ~ and kB.

(c) [10 points] As a black hole radiates, it loses mass and shrinks in size, and the Hawking
temperature goes up.

(a) Assuming the black hole emits one photon of energy kBTH in the amount of time
it takes light to travel RS, determine the lifetime of the black hole of initial mass
M .

(b) Suppose a black hole is created by a density �uctuation just after the big bang,
≈ 2 × 1010 years ago. What must be its initial mass in order for it to be in the
�nal stages of evaporation today?

(d) [5 points] The boundary between classical and quantum regimes (de�ning the Planck

length `P ) occurs when the radius approaches the black hole's Compton wavelength.
Find `P in terms of the fundamental constants G, c, and ~, and estimate its value to
within an order of magnitude in cm.

Possibly useful:

• Stefan-Boltzmann constant σ =
π2k4

B

60~3c2
.

• Gravitational constant G = 6.674× 10−11 N m2/kg2.
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