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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

 

You may keep this packet with the questions after the exam. 



Problem I.1

A spherical pendulum consists of a point mass, m, suspended by a massless string of length
L. Let the potential energy of the pendulum be zero at θ = 0.
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(a) (i) [4 points] Write down the Lagrangian for the system.

(ii) [5 points] What quantities are conserved and why are they conserved?

(b) If φ is a constant, the pendulum becomes a plane pendulum. Suppose that θm is the
maximum amplitude for θ in this motion.

(i) [6 points] Using your answer from part (a), derive an integral expression for the
period of this plane pendulum.

(ii) [5 points] Now suppose that θm is small, and, by making the appropriate small
angle approximations, evaluate the integral to get an explicit expression for the
period. Compare your answer to the result obtained from application of Newton's
2nd law to a simple pendulum under the same small-angle assumption.

(c) [5 points] If θ is a constant, the pendulum becomes a conical pendulum. This means
that the mass, m, moves on a circular trajectory. Use your answer from part (a) to
�nd dφ/dt in terms of θ for this case.

Possibly useful information:
∫ 1

0
dx√
1−x2 = π/2.
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Problem I.2

A lightning discharge generates a broad spectrum of electromagnetic (EM) waves at frequen-
cies of a few Hz to tens of kHz. The emitted EM waves propagate to the far-�eld, guided
by the conducting earth (mostly seawater) and the ionosphere above the earth at height
h ≈ 100 km (see �gure below).

We can model this scenario as a parallel-plate waveguide with in�nitely large width
W (W � h) in the y direction so that any fringe e�ects can be ignored (∂/∂y = 0). We
also assume that the plates are perfect conductors (σ = ∞) and the medium in-between is
vacuum. We use this model to explore the properties of the EM waves propagating along
the z-direction and then detected by sensors in the far-�eld, many wavelengths away from
the discharge.

(a) [5 points] Starting from the wave equation, derive the dispersion relation (kz versus
ω) for the TE modes (i.e., E = (0, Ey, 0)) of angular frequency ω. Is there any cut-o�
frequency, fc, below which the TE mode does not propagate? If so, �nd fc.

(b) [5 points] Find the dispersion relation (kz versus ω) for the TM modes (i.e., B =
(0, By, 0)) of angular frequency ω. Is there any cut-o� frequency fc, below which the
TM mode does not propagate? If so, �nd fc.

(c) [5 points] Find the phase velocity (vp) and group velocity (vg) of an EM wave propa-
gating in the z direction for both TE and TM modes. Express them as a function of
angular frequency ω.

(d) [5 points] Assume EM waves at frequencies of f = 100 Hz and 2 kHz are received by
sensors located 3000 km away from a lightning strike. For each frequency, determine
its arrival time(s) and polarization mode(s) (TE, TM, or both). Assume that all
frequencies were radiated simultaneously and propagated at the group velocity.

(e) [5 points] In reality, the conductivities of sea water and ionosphere are �nite (σseawater ≈
4(Ωm)−1 and σionosphere ≈ 10−4(Ωm)−1). Argue how good our perfect conductor as-
sumption is for the frequency at 100 Hz. For simplicity, use ε ≈ 8.8 × 10−12 F/m for
both sea water and ionosphere.
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Problem I.3

We can think of a laser functioning as a quantum heat engine, with a �hot� reservoir of atoms
at a temperature Th that pump the �working� atoms from the ground state g to an upper
level a and a �cold� reservoir at temperature Tc that transfers atoms from the lower lasing
level b to the ground state. We can schematically depict the situation as in the �gure below:
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(a) [6 points] The number of atoms in levels a and b obey rate equations (equations for
ṅa and ṅb). We use A and B to denote the hot bath atoms and α and β for the cold
bath atoms. Show from simple rate equations that in equilibrium, we have

na
ng

=
NA

NB

and
nb
ng

=
Nα

Nβ

,

where the nj represent the populations in the jth state of the laser and the Nk represent
the populations in the kth state of the reservoirs.

(b) [12 points] The laser threshold is de�ned by na = nb; i.e., the populations in the
upper and lower levels are equal. Use Boltzmann's distribution to show that

1 ≤ na
nb

= exp

[
− εa
kTh

+
εb
kTc

]
(c) [7 points] For every photon of energy εa− εb emitted, we must absorb one quantum of

energy εa from a hot bath atom. Thus show that the e�ciency of the laser elaser = 1− εb
εa

is always less than or equal to the Carnot e�ciency, 1− Tc

Th
.
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Problem I.4

If dark matter particles are produced in collisions of ordinary matter, there might be missing
energy and/or momentum in the detected collision products. One way to search for this is
to examine electron-positron (e−e+) collisions in which only a single photon (γ) is detected.

(a) [5 points] Show that the process e− + e+ → γ cannot occur.

(b) [7 points] The process e−+e+ → γ+Z can occur, followed by the decay Z → ν+ ν̄ of
the Z-boson to a neutrino-anti-neutrino pair. Like dark matter particles, the neutrinos
will not be detected, so this process must be ruled out in a search for dark matter.
What is the energy of the emitted photon? Assume the laboratory is the center of
mass frame for the collision, and express your answer in terms of the total energy ECM
in that frame and the Z-mass mZ . You may adopt units with c = 1.

(c) In the previous process the Z-boson is created as a free particle, which then decays.
Instead, the photon and neutrino pair may be produced directly, as e−+e+ → γ+ν+ν̄.
(In that case, one can show that the maximum energy of the emitted photon is ECM/2,
neglecting the very small neutrino mass.) But suppose now that a photon and a pair of
dark matter particles, each with mass mD, is produced directly, e−+ e+ → γ+D+ D̄.

(i) [6 points] Show that the maximum photon energy for a given ECM occurs when
the two dark matter momenta are equal.

(ii) [4 points] What is the maximum photon energy? (You may assume the dark
matter momenta are equal even if you have not shown it in the previous part.)

(d) [3 points] Another potential way to produce dark matter pairs is in quark-antiquark
(qq̄) annihilation in colliding protons at the LHC. (Instead of looking for a single
photon, such experiments can look for a �monojet� originating from emission of a
single gluon.) Since the quarks are moving inside the protons, ECM for the quark pair
is not �xed by the proton energy. Assume the colliding protons each have energy Ep,
and assume the maximum γ-factor for the quarks inside the protons is γq in the rest
frame of the proton. Find the maximum ECM for the qq̄ pair as a function of Ep, γq,
the quark mass mq, and the proton mass mp, assuming γq � 1 and Ep � mp.
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Problem I.5

Consider the one-dimensional wave equation,

∂2f

∂t2
− u2∂

2f

∂x2
= 0.

(a) [2 points] What is the physical meaning of u?

(b) [2 points] Derive the relationship (dispersion relation) between angular frequency ω
and wave vector k.

(c) [2 points] Write down the general solution f(x, t) of the above equation, and state
the physical meaning of its parts.

(d) [1 point] Suppose initially the wave has a Gaussian form, f(x, 0) = ae−x
2/2λ. Find the

solution at time t, given that the wave packet is traveling along the positive x axis.

(e) [6 points] Consider a source moving with speed v and emitting a monochromatic wave
in a medium where the wave speed is u. Derive the relation between the frequency of
the source and that seen by a receiver at rest in the medium and in front of the source.
In which direction does the frequency shift (red or blue)?

(f) [6 points] Suppose the moving source in (c) emits a Gaussian wave as in (d). How
does this Gaussian change when it is observed by the receiver at rest?

(g) Now consider wave propagation in a 3-dimensional medium. When the speed of the
source exceeds the speed of the wave, all the emitted waves form a cone of half angle
α from the direction of the source motion.

(i) [4 points] Derive the relationship between the angle α and the speeds of the wave
and of the source.

(ii) [2 points] Give an example of this in a physical application.
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