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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

 

You may keep this packet with the questions after the exam. 

 



Problem II.1

At time t = 0, the wave function for the hydrogen atom is

ψ(r, 0) =
1√
10

(2ψ100 + ψ210 +
√

2ψ211 +
√

3ψ211̄),

where the subscripts in ψnlm are the usual energy, angular momentum, and z-projection of
the angular momentum quantum numbers with 1̄ the m = −1 state. Ignore spin.

(a) [5 points] What is the expectation value for the energy of this system, in eV?

(b) [5 points] What is the probability of �nding the system with l = 1, m = +1 as a
function of time?

(c) [5 points] What is the probability of �nding the electron within 10−10 cm of the proton
at time t = 0? (A good approximate result is acceptable.)

(d) [5 points] How does this wave function evolve in time; i.e., what is ψ(r, t)?

(e) [5 points] Suppose a measurement is made which shows that n = 2, l = 1 and the
x-projection of the angular momentum is +1. Describe the wave function immediately
after such a measurement in terms of the ψnlm wave functions used above.

Possibly useful information:

ψnlm = RnlYlm, a ≈ 0.5Åis the Bohr radius, and

|R10|2 = 4
a3 e
−2r/a,

|R21|2 = r2

24a5 e
−r/2a,

Lx =
L+ + L−

2

L±Ylm =
√
l(l + 1)−m(m± 1)Ylm±1
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Problem II.2

Consider the one-dimensional in�nite potential well of length L.

(a) [4 points] What are the eigenenergies, En, and associated normalized stationary state
wave functions, ψn(x ), of a single electron in this potential?

(b) [6 points] Now suppose we have two electrons in the potential and treat them as non-
interacting, non-identical particles. What are the lowest three allowed energies of the
two-particle system, and their associated wave functions? Identify any degeneracies.

(c) Now suppose we couple the particles via an interaction V = λδ(x 1-x 2) where x 1 and x 2

are the coordinates of the particles, δ(x ) is the one-dimensional Dirac delta function,
and λ > 0.

(i) [4 points] Use lowest-order perturbation theory to �nd the energy shifts of the
�rst excited states resulting from the interaction.

(ii) [2 points] To zeroth order in V what are the normalized stationary state wave-
functions associated with the energies in part (i)?

(iii) [2 points] Formulate a condition on the coe�cient λ for this perturbation theory
to be applicable.

(d) [4 points] Now consider that the electrons in (b) are identical fermions, each of spin
1/2. What are the wave functions for the ground state and �rst excited state of the
unperturbed system?

(e) [3 points] How does the interaction V change the �rst excited states when we include
the spin and fermion nature of the electrons?

Possibly useful integrals:∫ π
0
dφ sin4 φ = 3π/8∫ π

0
dφ sin2 φ sin2 2φ = π/4
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Problem II.3

A hypothetical particle of mass m interacts with the electron in the ground state of a hydro-
gen atom but not with the proton (which is assumed to be �xed at the origin). It scatters
elastically i.e. leaves the atom in the ground state. The theory of this interaction is that it
can be approximated by a delta-function potential

U(r − r′) = λδ(r − r′)

in which λ is a constant and r, r′ are the coordinates of the particle and the electron respec-
tively. Suppose that the particle passes through the atom su�ciently slowly that it sees an
average density of the electron in the ground state.

(a) [5 points] Determine the e�ective potential U0(r) that the hypothetical particle sees.

(b) [6 points] Determine the elastic scattering amplitude in the Born approximation. Be
sure to de�ne any symbols you introduce.

(c) [9 points] Determine the di�erential and total cross-sections in the Born approxima-
tion.

(d) [5 points] State the conditions for the applicability of the Born approximation in this
case.

Additional information: The ground state wave-function of the hydrogen atom is

ψ(r, θ, φ) = 2(4π)−1/2a
−3/2
B e−r/aB ,

where aB is the Bohr radius.
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Problem II.4

In this problem you will use symmetry to gain insight into how a perturbation, H ′, modi�es
the wavefunctions and energy levels of a system. In particular, symmetry will be used to
determine selection rules for what states are connected in perturbation theory.

The Hamiltonian for a spinless particle in three spatial dimensions has the following form :

H =
p2

2m
+ V0(r) + λH ′

where H ′ = V ′(r)Yk0(θ) and Yk0 is a spherical Harmonic, k is a positive integer and λ
is a small parameter; λV ′(r)Yk0(θ) is treated as a perturbation. The unperturbed Hamil-
ton is rotationally invariant and with energies given by E0

nl and wave functions ψ0
n,l,m(~r) =

〈~r|n, l,m〉0 = ψ0
n,l(r)Ylm(θ, φ).

One selection rule is that m′ = m, which follows from the fact that H ′ is azimuthally
symmetric. As a direct consequence, m is a good quantum number and the perturbative
expression for the energy eigenenstate states assumes the following form

|ψnlm〉 =

(
|nlm〉0 +

∞∑
j=1

λj
∞∑
n′=0

∞∑
l′=m

dj;nlmn′l′ |n
′l′m〉0

)

where |ψnlm〉 labels the state which at λ = 0 becomes |nlm〉0. The �rst order coe�cients are
given by d1;nlm

n′l′ = 〈n′l′m|H ′|nlm〉/(E0
nl − E0

n′l′) .

The energy levels for |ψnlm〉 also have an expansion in λ: Enlm = E0
nl +

∑∞
j=1 λ

jEj
nlm with

E1
nlm = 〈nlm|H ′|nlm〉.

(a) [7 points] Suppose k = 3, i.e. the perturbation is λV ′(r)Y30(θ). Consider the state
|nlm〉 = |140〉. Find which of the �rst order coe�cients d1;1 4 0

n′l′ vanish for reasons of
symmetry.

(b) [6 points] Suppose k = 4, i.e. the perturbation is λV ′(r)Y40(θ). In this case, certain
levels |nlm〉 have E1

nlm = 0; for these levels, the �rst order perturbation of the energy
vanish by symmetry. Identify these levels.

(c) [6 points] Suppose k = 3, i.e. the perturbation is λV ′(r)Y30(θ). In this case, certain
levels |nlm〉 have E1

nlm = 0. Identify these levels.

(d) [6 points] Suppose k = 2, i.e. the perturbation is λV ′(r)Y20(θ). Suppose further that
E1

220 = ε where ε has dimensions of energy. What is E1
222 in terms of ε?

Possibly useful information (continued on next page):

4



H ′ is a spherical tensor Tk0 and it has parity (−1)k. The Wigner-Eckert theorem implies
that 〈n′l′m′|Tk0|nlm〉 = 〈n′l′||Tk0||nl〉〈lkm0|l′m′〉, where 〈n′l′||Tk||nl〉 is a reduced matrix
element and 〈lkm0|l′m′〉 is a Clebsch-Gordan coe�cient. This implies selection rules since
the Clebsch-Gordan coe�cients may be zero.

Some Clebsch-Gordan coe�cients 〈j1j2m1m2|jm〉:
〈2220|22〉 = 〈2202|22〉 =

√
2
7

〈2211|22〉 = −
√

3
7

〈222−1|21〉 = 〈22−12|21〉 = −
√

1
5

〈2210|21〉 = −〈2201|21〉 = −
√

3
10

〈222−2|20〉 = 〈22−22|20〉 = −〈221−1|20〉 = −〈22−11|20〉 = 〈2200|20〉 =
√

1
5
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Problem II.5

Before the development of a microscopic theory of superconductivity, Vitaly Ginzburg and
Lev Landau relied on a general theory of second order phase transitions to obtain an
equation for a complex order parameter, Ψ(r), for the superconducting state. In the
presence of a magnetic �eld, this (Ginzburg-Landau) equation for Ψ(r) has the form:

1

2m

(
p− q

c
A
)2

Ψ + αΨ + βΨ|Ψ|2 = 0.

The normalization condition is chosen so that |Ψ(r)|2 = ns, where ns is the concentration of
superconducting electrons. In accordance with the interpretation of Ψ(r) as a wave
function of electronic (Cooper) pairs, q = 2e and m = 2me. The temperature- and
material-dependent parameters satisfy α < 0 and β > 0.
Su�ciently high magnetic �elds destroy superconductivity. As the �eld decreases,
superconducting regions begin to nucleate at a certain critical �eld Hc, and the order
parameter, Ψ(r), becomes nonzero. At the onset of superconductivity, the order parameter
is small and the cubic term in the Ginzburg-Landau equation can be neglected. This
linearized Ginzburg-Landau equation reduces to a Schrödinger-like equation, which admits
reasonable (bounded) solutions only at H < Hc.

Consider a semi-in�nite superconductor (occupying the region x > 0), which is subjected to
a perpendicular uniform magnetic �eld H = Hz. The boundary can be incorporated as the
boundary condition dΨ

dx

∣∣∣
x=0

= 0. Work in the gauge A(x, y) = (0, Hx, 0) and consider a

wave function of the form
Ψ(x, y) = f(x)eiky. (1)

(a) [9 points] Using the linearized form of the Ginzburg-Landau equation and the ansatz
Eq. (1), obtain an equation for f(x) and compare it with the Schrödinger equation for
a particle in some potential V (x). Identify this potential and give an interpretation of
lengthscales xk = ~kc/qH and ξ = ~/

√
2m|α|, which appear in the equation.

(b) [10 points] Consider the e�ect of the magnetic �eld on superconductivity in the bulk
(i.e., far from the boundary). Argue that the boundary e�ects can be ignored for
xk � ξ. Find the critical magnetic �eld Hc, at which a bounded solution of the
equation from part (a) �rst appears.

Problem continues on next page
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(c) Due to the presence of the boundary, the critical magnetic �eld H∗c is actually higher
than that calculated in part (b) above. To demonstrate this, consider the case xk ≈ ξ
and apply the following trick: In the Schrödinger-like equation for f(x), let x range
over the entire interval −∞ < x <∞, but adopt the potential W (x) = V (|x|), where

V (x) is the potential calculated previously.

(a) [2 points] Sketch both W (x) and V (x).

(b) [2 points] Argue that the ground state of the �ctitious system still satis�es the
boundary condition df/dx = 0 at x = 0, and its lowest eigenvalue is lower than
that found in part (b).

(c) [2 points] Argue that it implies a higher nucleation �eld H∗c than that Hc for a
sample without boundary.

Thus, nucleation is favored in the presence of the surface. (This remarkable
phenomenon was discovered by D. Saint-James and P.-G. de Gennes in 1963).
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