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Do any four problems.   
 
Problems   I. 1,   I. 2,   I. 4   and   I. 5  are each worth 25 points. 

   
Problem   I. 3   Statistical Mechanics is worth 40 points. 

 
Put all answers on your answer sheets. 

 
Be sure your Qualifier ID Number is at the top right corner of each  
sheet and turn in solutions to four problems only.  If five solutions  
are turned in we will grade # 1 - # 4.     

 
 
 
 
 
 



Problem I.1

Consider a frictionless bead of mass m that is constrained to move along an elliptical wire.
The shape of the wire is given parametrically in terms of an angular variable θ as

x = a sin(θ) , y = 0 , z = 2a cos(θ),

where a is a constant with dimensions of length. The wire sits in a gravitational potential
of the form V = mgz; the maximum of the potential energy is 2mga at θ = 0.
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(a) [6 points] Write the Lagrangian for this system in terms of the variable θ and find
the equations of motion.

(b) [2 points] Sketch the potential energy as a function of θ and write an expression for
the total energy of the system.

For sufficiently high energies E > Eth, the system has no turning points, and the
motion of the bead never stops. Find an expression for the threshold energy Eth in
terms of the parameters of the model.

(c) [5 points] Linearize the equation of motion for small θ near θ = 0 at the top of the
wire. Show that the solution with the initial condition θ(0) = 0 at time t = 0 is
θ(t) = C sinh(Dt), where C and D are constants. Find the constant D in terms of the
parameters of the model. Find the constant C in terms of these parameters and the
energy excess ∆E ≡ E − Eth of the particle.

(d) [4 points] For E > Eth, an exact expression for the period for one rotation as a

function of the energy can be written in integral form: τ(E) =
∫ 2π

0
f(θ;E) dθ. Use

energy conservation to determine the function f(θ;E).

(e) [8 points] Suppose E > Eth, but ∆E � Eth. Show that then

τ ≈ G ln

√ Ê

∆E

 .

Express the constant G in terms of the parameters of the model and estimate Ê up to
a dimensionless prefactor.

See next page for a hint
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Hint: It is useful to note that for very small ∆E, the bead moves quite slowly at the top of
the wire, i.e. near θ = 0. Thus, the period of rotation is dominated by the time spent near the
top. Let “near the top” mean |θ| < θc, where θc is a reasonably small (dimensionless) angle.
If you simply neglect the time spent at |θ| > θc, you will still have a good approximation to
the full period, even if the motion near the bottom is poorly described. Your approach may
be based on Part (c) or on Part (d). The following formulas may be helpful:∫ Y

−Y

dx√
A2 +B2x2

=
2 sinh−1

(
BY
A

)
B

.

Asymptotic expressions at x→∞ : sinh(x)→ ex/2, sinh−1(x)→ ln(2x).
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Problem I.2

We want to find cavity eigenmode frequencies for electromagnetic waves inside a closed
cylindrical can of length L and radius a, consisting of side walls and top and bottom caps.
The can is made from a highly conductive metal, whose electric conductivity is taken to
be infinite in this problem: σ = ∞. {r, ϕ, z} are cylindrical coordinates. Assume that the
electric and magnetic fields in this problem are completely contained within the cavity, i.e.
E = 0 and B = 0 outside the cavity.

Many of the parts of this problem can be done even if you skipped earlier parts. Useful
equations are given at the end of the problem. The vacuum Maxwell Equations (ME) are:

∇ ·B = 0, ∇ ·E = 0, c∇×B = ∂tE, c∇×E = −∂tB.
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(a) [4 points] At some time t, a snapshot is taken of the cavity, and an E field is observed
to look as shown in the left figure, whereas B = 0. The electric field is parallel to
the cylindrical axis z of the cavity and depends only on r, but not on ϕ and z, i.e.,
E = ẑEz(r). If you were to run the time forward, what component of a B field would
be generated? (Use your intuition and knowledge of the ME. No derivations.) Make a
rough sketch of this emergent B field, including the direction.

(b) [3 points] State why theE andB fields as obtained in Part (a) (given the symmetries)
are consistent with the boundary conditions at the conducting walls. What is the value
of Ez at r = a?

(c) [6 points] From one of the ME, find an equation for ∂Ez/∂t (under the symmetry
assumptions). Check that this equation is consistent with your prediction of B. Next,
find the time evolution equation for your predicted component of B. Combine the two
equations to obtain the following wave equation for Ez(r, t):

1

c2
∂2Ez
∂t2

=
1

r

∂

∂r

(
r
∂Ez
∂r

)
.

(d) [4 points] Assume solutions of the form Ez(r, t) = Ẽz(r) e
−iωt. Solve for the Ẽz(r)

eigenfunction using the boundary condition at r = a and find the lowest eigenfrequency
for this mode. This is the TM mode.
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(e) [4 points] Now consider a putative configuration of a magnetic field B in the cavity
as shown in the right figure (with E = 0) for a supposed TE mode, under the same
symmetry assumptions as in Part (a). What is wrong with this picture?

Suppose we still have Bz 6= 0, but we also allow for ∂B/∂z 6= 0, while preserving axial
symmetry of the problem. Use one of the ME to determine which other component of
B must be also nonzero (besides Bz). Write down this equation. Can you now sketch
a more reasonable snapshot of the B field?

(f) [4 points] Run the time forward. What component of E field do you expect to be
generated? Sketch this E field including the correct sign.

Useful equations: In cylindrical coordinates,

∇ ·A =
1

r

∂(rAr)

∂r
+

1

r

∂Aϕ
∂ϕ

+
∂Az
∂z

.

For an axially-symmetric field F (r, z), such that ∂F /∂ϕ = 0,

(∇× F )r = −∂Fϕ
∂z

, (∇× F )ϕ =
∂Fr
∂z
− ∂Fz

∂r
, (∇× F )z =

1

r

∂(rFϕ)

∂r
.

A regular solution of the following equation

d2y

dx2
+

1

x

dy

dx
+ y = 0

is given by the Bessel function of the zeroth order: y(x) = J0(x). The Bessel function
vanishes J0(xn) = 0 at the points xn, n = 1, 2, . . .
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Problem I.3

Consider a two-dimensional (2D) periodic crystal lattice consisting of a large number N of
equivalent atoms and occupying an area A. The ratio A/N ≡ a2 defines the characteristic
length a of the order of interatomic distance. In this problem, we study contributions of
lattice vibrations (phonons) to the thermal energy U and heat capacity CV of the 2D crystal.

First consider the in-plane vibrations, where the atoms move in the 2D plane of the
crystal. In the long-wavelength limit (for small k), the frequencies ω of these vibrational
modes depend linearly on the 2D wavevector k = (kx, ky):

ωin(k) = v
√
k2x + k2y = vk, (1)

where v is the speed of sound. There are two such modes (transverse and longitudinal), but
we assume for simplicity that they are degenerate and have the same v.

(a) [5 points] In the Debye model, Eq. (1) is assumed to hold up to the Debye wavenumber
kD, i.e., to be valid for k < kD. The value of kD is determined by the requirement that
the total number of vibrational modes in the circular domain k < kD is equal to the
number 2N of the 2D spatial degrees of freedom of the atoms. Show that kD = 2

√
π/a.

(b) [8 points] In the Debye theory, write an integral expression for the phonon energy
U(T ), valid for all temperatures T . Also, write a general thermodynamic formula for
the heat capacity at constant volume, CV (T ), in terms of U(T ).

(c) [8 points] i) From your expressions in Part (b), find U(T ) and CV (T ) in the low-
temperature limit. ii) How does the T -dependence of CV (T ) differ from the usual
expression in three dimensions? iii) What is the relationship between the exponent
of T in U(T ) and the spatial dimension? iv) What is the physical origin of this
relationship?

(d) [7 points] From your expressions in Part (b), find U(T ) and CV (T ) in the high-
temperature limit and verify that they agree with the classical equipartition theorem.

(e) [5 points] Draw a sketch of CV (T ) in the full range of temperatures, from low to
high T , including T = 0. What is the characteristic temperature scale TD (the Debye
temperature) separating the low- and high-temperature limits?

The Nobel Prize in Physics in 2010 was awarded for the discovery of graphene, a 2D honey-
comb lattice of carbon atoms. The figure on the next page shows the experimentally mea-
sured dispersion relations ωn(k), n = 1, . . . , 6, for the 6 vibrational eigenmodes in graphene.
The modes represented by Eq. (1), with different values of v, correspond to the second and
third lowest curves near the origin. (The upper three branches are due to the two-atom
unit cell in a honeycomb lattice. Ignore these three upper branches, because they are not
excited at low temperatures.) The lowest branch originates from the out-of-plane motion of
the atoms perpendicular to the 2D plane. Similarly to perpendicular vibrations of an elastic
plate, this mode has the following dispersion relation for small k:

ωout(k) = b k2, (2)

where b is a coefficient.
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(f) [7 points]. Determine temperature dependences of the contributions from the mode
in Eq. (2) to U(T ) and CV (T ) at low T . Sketch the contribution to CV (T ) by a dashed
line on your plot in Part (e) for low T only. Which mode gives the predominant
contribution to CV (T ) at low T , the in-plane mode (1) or the out-of-plane mode (2)?

Figure 1: Phonon dispersion relations ωn(k), n = 1, . . . , 6, in graphene.
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Problem I.4

In this problem, you are to consider the decay of one particle into two particles, one of which
has zero mass, using the special theory of relativity and an alternative theory.

(a) [10 points] Einstein’s special theory of relativity does not allow the decay of a particle
A of mass mA to two particles B and C (of masses mB and mC respectively) if mC = 0
and mA < mB. Prove this statement using energy and momentum conservation in two
ways: in the rest frame of the particle A and also in a frame where the energies of the
particles EA,B are much larger than their masses.

Recently, it has been claimed by the OPERA experiment in Italy that neutrinos travel faster
than the speed of light. One way to possibly understand this new result is to replace the
energy-momentum relation of special relativity by the following equation in the laboratory
reference frame:

E2
A = m2

Ac
4 + p2Ac

2(1 + εA), (1)

where εA � 1. The ε-factors for different species could be different. In what follows, assume
that εB,C = 0 whereas εA 6= 0. Also assume that mC = 0 and mA < mB, as in Part (a). Note
that Eq. (1) violates Lorentz invariance, so answer the following questions in the laboratory
reference frame.

(b) [6 points] The derivative relation between energy, momentum, and velocity in classical
physics, which follows from identifying the energy as the Hamiltonian and using the
Hamilton equation v = dH/dp, gives the particle speed v. Using Eq. (1), find an
expression for the speed vA of particle A and show that its maximum value can exceed
the speed of light c. Find the maximum speed of particle A in terms of εA.

(c) [9 points] Show that, if nature obeyed the above form of violation of the special theory
of relativity, then particle A, traveling at a high enough speed, can decay to particles B
and C (which is kinematically forbidden in the εA = 0 limit). Calculate the threshold
momentum pthA and energy Eth

A of particle A for this decay to take place, in terms
of mA, mB, c, and εA. Assume energy and momentum conservation and work in the
laboratory reference frame, where Eq. (1) holds.

To answer this question, plot the energy-momentum relations E vs. p for both particles
A and B on the same graph from p = 0 to a sufficiently high p. Do these two curves
intersect? If so, denote the momentum at the intersection point as p0.

Is it permitted, by the energy-momentum conservation laws, for particle A to decay to
particles B and C if pA = p0? What are the momentum and energy of particle C in
this case? Is the decay process permitted for pA < p0? For pA > p0?

Given your answers to these questions, conclude that p0 gives the threshold momentum:
pthA = p0. Calculate p0 and the corresponding energy Eth

A in terms of the parameters of
the problem.
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Problem I.5

In this problem, we study properties of electromagnetic waves. Maxwell’s equations for the
electric and magnetic fields E and B in vacuum in Gaussian units are

∂E

∂t
= c∇×B, ∂B

∂t
= −c∇×E, ∇ ·B = 0, ∇ ·E = 0. (1)

(a) (a) [5 points] Show that in vacuum both E and B satisfy wave equations. What is
the wave velocity?

(b) [4 points] Write a plane-wave solution for a given wavevector k. What are the
possible directions of E andB relative to k and to each other? How many linearly
independent directions are there for, say, E?

(b) [5 points] The energy density in an electromagnetic field is u = (E2 + B2)/8π and
the energy flux, or Poynting vector, is S = c (E ×B)/4π. Using Maxwell’s equations,
show that u and S satisfy the continuity equation for energy.

(c) Here we consider electromagnetic radiation caused by an oscillating electric dipole of
magnitude p located at the origin and aligned along the z axis. Assume that the dipole
(and hence the fields) vary sinusoidally in time ∼ e−iωt. In the approximation where
the scale of the dipole, d, is small, kd � 1, and in the radiation zone, kr � 1, the
vector potential in a particular gauge at a distance r from the dipole is

A(r, t) = −ikp e
ikr−iωt

r
ẑ. (2)

Here k = ω/c is the wavenumber. There is also a scalar potential that is not explicitly
given here.

(a) [4 points] In the radiation zone, kr � 1, what are the electric and magnetic
fields? Obtain B using B = ∇×A, and E from Eq. (1).

(b) [3 points] What is the energy flux S of the waves for kr � 1?

(c) [4 points] What is the time-averaged power dP/dΩ radiated per unit solid angle
by the oscillating dipole moment for kr � 1?

Some useful vector calculus identities for arbitrary W and V are

∇× (∇×W ) = ∇(∇ ·W )−∇2W

∇ · (∇×W ) = 0

∇ · (W × V ) = V · (∇×W )−W · (∇× V )

In spherical coordinates,
ẑ = r̂ cos θ − θ̂ sin θ

in terms of spherical unit vectors, and the curl is

∇× V =
r̂

r sin θ

[
∂(Vφ sin θ)

∂θ
− ∂Vθ

∂φ

]
+
θ̂

r

[
1

sin θ

∂Vr
∂φ
− ∂(rVφ)

∂r

]
+
φ̂

r

[
∂(rVθ)

∂r
− ∂Vr

∂θ

]
.
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