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Do any four problems.   
 
Problems   I. 1,   I. 2,   I. 4   and   I. 5  are each worth 25 points. 

   
Problem   I. 3   Statistical Mechanics is worth 40 points. 

 
Put all answers on your answer sheets. 

 
Be sure your Qualifier ID Number is at the top right corner of each  
sheet and turn in solutions to four problems only.  If five solutions  
are turned in we will grade # 1 - # 4.     

 
 
 
 
 
 



Problem I.1

In this problem, we study torsion and torsional waves in a uniform cylindrical rod of length
` and radius R with a constant mass density ρ, a shear modulus G, and an area moment of
inertia J . The latter is defined as J =

∫ R
0
r2 d2r, where r = (y, z) is the transverse coordinate

vector, and is related to the usual mass moment of inertia I by I = ρJ`. The twist angle of
the rod, φ(x, t), is a function of position x along the rod and of time t.

(a) [3 points] With one end of the rod (x = 0) held fixed, a twisting torque T is applied
to the other end (x = `). In the case where the applied torque and twist angle are
time independent, the local and total twist angles are,

φ(x) =
Tx

GJ
, ∆φ = φ(`)− φ(0) =

T`

GJ
.

How much work was done to twist the rod? Express your answer in terms of ∆φ and
other parameters, eliminating T from the answer.

(b) [3 points] Now consider the case of a general dependence φ(x, t). Applying the result
of Part (a) to a small section dx of the rod length and using the work-energy relation,
show that the potential energy of the rod is

V =
GJ

2

∫ `

0

(
∂φ

∂x

)2

dx.

(c) [4 points] Write down an expression for the kinetic energy K of the rod in terms of
φ(x, t), J , ρ, and an integral along the rod. What is the system Lagrangian, L?

(d) [3 points] If both ends of the rod are free (i.e., not clamped or constrained in any
way), show that ∂φ/∂x = 0 at x = 0 and x = `.

(e) [7 points] Using the Lagrangian L and Hamilton’s principle, find a partial differential
equation for φ(x, t) describing torsional motion of the rod. Assuming that both ends
of the rod are free, indicate how the boundary conditions appear in the derivation.

(f) [5 points] What is the speed of propagation of torsional waves along the rod? What
are the allowed frequencies of the small-amplitude torsional oscillations of the rod, if
both ends of the rod are free?
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Problem I.2

In microwave scattering on a metal, a resonant absorption was observed at a frequency lower
than the metal’s plasma frequency ωp =

√
4πne2/m, where e is electron charge, m electron

effective mass, and n number density of free electrons. This led to an important area of
applications called “plasmonics”. Here we study a wave propagating along the interface
between a dielectric and a metal and derive the frequency of this surface plasma wave.

Let the metal (treated as a plasma with immobile ions and cold electrons of density n)
occupy the half space x > 0. Assume that the space at x ≤ 0 is occupied by vacuum (with
dielectric constant ε = 1).
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(a) [5 points] Suppose that an electric field E(t) = E0e
−iωt exists in the plasma. What is

the motion of the free electrons due to the force from this field, according to Newton’s
law? Express the electron’s displacement, r, in terms of the field E.

(b) [5 points] Find the polarization P (electron dipole moment density) induced by this
electric field. Then use D = E+4πP = ε(ω)E(ω) to show that the dielectric function
of the plasma is ε(ω) = 1− (ωp/ω)2.

(c) [5 points] If ε < 0 in the metal (which is the case for ω < ωp), there exist solutions of
Maxwell’s equations that are concentrated near the surface and propagate along the
surface. For a wave with wave vector k = kj, propagating in the y-direction, and in the
quasistatic approximation ω � ck, the electric field can be derived from a potential,

E = −∇Φ Φ(x, y, t) = φ(x, y)e−iωt, (1)

where φ satisfies the Poisson equation with sources only on the surface. Show that the
equation ∇2φ = 0, valid for both x > 0 and x < 0, has a solution of the form

φ(x, y) =

{
Ae−λx+iky for x > 0

Beλx+iky for x < 0
(2)

and find a relation between λ and k.

(d) [5 points] From Eqs. (1) and (2), derive the electric field E for x > 0 and x < 0.

From the boundary conditions at x = 0 (continuity of the tangential component of E
and normal component of D), derive a relation between the coefficients A and B and
obtain the frequency ω of the surface plasma wave. Does this ω depend on k?

(e) [5 points] In a diagram like the figure above, sketch the electric surface charges (by
+ and −) and the electric field lines of the surface plasma waves at t = 0.

2

jhessing
Typewritten Text
       

jhessing
Typewritten Text
 Fall 2012



Problem I.3

In this problem, we discuss the physics of a gas of electrons, positrons, and photons in
thermal equilibrium.

(a) [5 points] To begin, consider a gas of non-interacting spin-1/2 fermions with a dis-
persion relation

E(k) =
√
m2c4 + ~2c2k2

confined to a box of volume V . Let F denote the free energy F = −kBT lnZ, where

Z =
∑
states

e−(E−µN)/kBT

is the grand partition function. Here, the sum runs over all many-particle states, E is
the total energy of the state, N is the total number of particles in the state, µ is the
chemical potential, and T is the temperature. Write down an integral expression for
the free energy F of the fermion gas of the form

Ffer(V, T, µ) = V

∫
d3k g(k) (1)

and find the function g.

(b) [5 points] In the same way, write down an integral expression for the free energy F
of a photon gas, confined in a box of volume V :

Fph(V, T ) = V

∫
d3k h(k) (2)

and find the function h. What is the chemical potential of photons?

(c) [5 points] We are now ready to consider a gas of electrons, positrons, and photons.
Throughout the problem, we will assume the gas has equal numbers of electrons and
positrons. However, the total number of these particles can change via the pair produc-
tion process γ + γ ↔ e−+ e+. Show that µe− = µe+ = 0 in this system in equilibrium.

(d) [5 points] Changing the integral in Eq. (2) to a dimensionless variable, show that the
photon free energy has the form

Fph(V, T ) = V (kBT )aBph (3)

and obtain the exponent a. Then determine the coefficient Bph using the integral∫ ∞
0

x3

ex − 1
dx =

π4

15
. (4)

Hint: Write the integral (2) in spherical coordinates as
∫∞
0
h(k) 4π d(k3/3) and inte-

grate by parts.
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(e) [5 points] Consider the integral in Eq. (1) for µ = 0 in the limit of high temperatures
kBT � mc2. Show that, in this limit, the fermion free energy has the form

Ffer(V, T ) = V T bBfer (5)

and obtain the exponent b. Then determine the coefficient Bfer using the integral∫ ∞
0

x3

ex + 1
dx =

7π4

120
. (6)

Hint: Write the integral (1) in spherical coordinates as
∫∞
0
g(k) 4π d(k3/3) and inte-

grate by parts.

(f) [5 points] Using the results of Parts (d) and (e), find the total free energy F , entropy
S, and energy U of the electron, positron, and photon mixture in the high-temperature
limit kBT � mc2.

(g) [5 points] Now consider the low-temperature limit kBT � mc2. Show that the free
energy, entropy, and energy of the electron-positron gas are exponentially small in this
limit.

(h) [5 points] Imagine that we slowly expand the box from an initial volume Vi to a final
volume Vf , keeping it thermally insulated during the process. Assume that the initial
temperature satisfies the condition kBTi � mc2, while the final temperature satisfies
the condition kBTf � mc2. Find Tf in terms of Vf , Vi, and Ti. You can neglect the
electrons and positrons in the final system, given the result of Part (g).
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Problem I.4

A rocket accelerates by ejecting part of its mass (the fuel) as exhaust. The matter of the
exhaust is ejected at a constant velocity u with respect to the rocket. The rocket starts at
rest with mass M0 and reaches a terminal speed V at burnout, when all of its fuel is used
up. Its rest mass at burnout is M . You are to find the ratio M/M0 in terms of V and u.

(a) [6 points] First solve the problem non-relativistically, when the rocket’s speed v � c.

(b) [6 points] In the relativistic case, we may set c = 1 and consider the acceleration as
an addition of many small velocity increases. Let the rocket’s momentary rest mass be
m, and let a small amount of rest mass dm be ejected in the rocket’s momentary rest
frame. Since the resulting velocity increase dv is small, a result analogous to Part (a)
applies. Hence write dv in terms of m, dm and u.

(c) [7 points] Add these velocity increases relativistically to get the terminal speed V and
solve for M/M0.

Hint: Relativistic addition of velocity is an ordinary addition of the rapidity (hyperbolic
angle) α = tanh−1 v. By expressing dv in terms of dα, your equation in Part (b) can
be integrated directly.

(d) [6 points] Find the ratio M/M0 for a photon rocket, which emits radiation at the
speed c = 1, for example by combining matter and antimatter in a controlled way to
yield high-energy gamma rays.
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Problem I.5

In this problem, we study propagation of plane waves in a homogeneous, nonpermeable
(µ = 1), but anisotropic dielectric medium, which is characterized by a symmetric dielectric
tensor εij such that Di =

∑
j=x,y,z εijEj.

(a) [5 points] Starting from Maxwell’s equations, show that a plane wave solution

E(r, t) = Ẽ(k, ω) e−iωt+ik·r (1)

with the frequency ω and wave vector k must satisfy the following equation in the
Gaussian system

(k · Ẽ)k − k2Ẽ +
ω2

c2
ε · Ẽ = 0, (2)

where c is the speed of light, and (ε · Ẽ)i ≡
∑

j εijẼj.

(b) [10 points] Suppose x, y, and z are the directions that diagonalize the tensor

εij =

 εxx 0 0
0 εyy 0
0 0 εzz

 . (3)

Consider a linearly polarized plane wave (1) of the frequency ω traveling in this medium
along the direction ẑ, so that k‖ẑ. From Eq. (2), find the two possible wave numbers
k1,2 for this wave and their respective polarizations Ẽ1,2, as well as the corresponding
wave lengths λ1,2.

(c) [10 points] Suppose a plane wave of the frequency ω propagates along the direction
ẑ and is polarized along the direction Ẽ‖(x̂ + ŷ) at z = 0. At what distance L does
the polarization Ẽ of the wave turn 90◦ to become Ẽ‖(x̂− ŷ)?

Additional information. For any vector V ,

∇× (∇× V ) = ∇(∇ · V )−∇2V .

Maxwell’s equations in the absence of free charges and currents are

∇ ·D = 0,

∇ ·B = 0,

∇×E = −1

c

∂B

∂t
,

∇×H =
1

c

∂D

∂t
.
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