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Problem II.1

Last year, there was experimental work on spectroscopy of anti-hydrogen (a bound state of an
antiproton and a positron). In this problem, we study the ground-state energy level splitting
in either hydrogen or anti-hydrogen caused by the hyperfine structure and the Zeeman effect.

The electron in the ground state Ψ1,0,0 of the hydrogen atom experiences an effective
magnetic field

Bp =
2

3
µ0 gp µp

Sp
h̄
|Ψ1,0,0(0)|2

produced by the magnetic moment gpµpSp of the proton, where Sp, µp = eh̄/2mp, and
gp are the proton spin, magneton, and g-factor. The electron probability density at the
origin is |Ψ1,0,0(0)|2 = 1/πa3

0, where a0 is the Bohr radius. The electron magnetic moment
is µe = −ge µB Se/h̄, where Se, µB = eh̄/2me, and ge are the electron spin, magneton and
g-factor. Numerical values of the parameters are given at the end of the problem.

(a) [3 points] The electron magnetic moment interacts with the proton magnetic field via
the Hamiltonian Hep = −µe ·Bp. Show that this Hamiltonian can be written in the
form Hep = A (Sp ·Se)/h̄2 and obtain a formula for the coefficient A. Then substitute
the numbers and calculate the numerical value of A in Joules.

(b) [6 points] The total spin S = Sp+Se of the hydrogen atom in the ground state is the
vector sum of the nuclear spin Sp and the electron spin Se. Rewrite the Hamiltonian
Hep = A (Sp ·Se)/h̄2 in terms of the eigenvalues of the operators S2

p , S
2
e , and S2. What

are the allowed eigenvalues of these operators? What are the energy levels of Hep in the
states with S = 1 and S = 0? Express the hyperfine energy splitting ∆Ehf between the
states with S = 1 and S = 0 in terms of A and calculate the corresponding frequency
f = ∆Ehf/h in THz.

(c) [8 points] Now consider the effect of an applied external magnetic field B. The Hamil-
tonian of Zeeman interaction HZ = −µe ·B couples the electron magnetic moment to
the external field. (Neglect interaction of the external magnetic field with the proton
magnetic moment, because µp � µe.) Calculate the change in energy levels of the
hydrogen atom in the ground state n = 1 as a function of the applied magnetic field
B by taking into account both the Zeeman effect and the hyperfine interaction. What
happens when the external field B is comparable to Bp?

(d) [6 points] Plot your resulting energy levels versus the external field B. Label them
according to the quantum numbers S and Sz, using the B = 0 point to identify the
states. Comment on which of the states are strongly (linearly) dependent on the
magnetic field B for small field.

(e) [2 points] Suppose you have a magnetic trap, where the magnetic field is zero at the
center and increases in magnitude in all directions away from the origin. Which of
quantum states discussed in Part (d) can be trapped in this device?

Numerical values in the SI units of N, A, J, and T for Newton, Ampere, Joule, and Tesla:
µ0 = 4π × 10−7 N A−2, µB = 9.27 × 10−24 J T−1, ge = 2, µp = 5.0510 × 10−27 J T−1,
gp = 5.58, a0 = 5.29× 10−11 m, h = 6.626× 10−34 J s.
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Problem II.2

An atom has two internal energy eigenstates |g〉 and |e〉 with the energy difference Ee−Eg =
h̄ω0 > 0. The two states are connected by the atomic electric dipole operator µ̂ = µ0(σ̂+ +
σ̂−), where σ̂+ = |e〉〈g| and σ̂− = |g〉〈e| are the raising and lowering operators of the two-level
system. The atom has mass m and is confined in a 1D harmonic potential with the angular
frequency of motion ωm. The energy eigenstates of the motion of the atom in the harmonic
potential are denoted as |n〉, where n is an integer, n ≥ 0. These states are connected by
the raising and lowering operators: â†|n〉 =

√
n+ 1|n+ 1〉 and â|n〉 =

√
n|n− 1〉.

An electromagnetic wave propagating along the direction of harmonic motion with fre-
quency ω and wavevector k = ω/c exerts the electric field E(x̂, t) = E0 cos(kx̂− ωt) on the
atom. Here the operator of the atomic coordinate x̂ can be written in terms of the raising

and lowering operators of the oscillator: x̂ = x0(â† + â), where x0 =
√
h̄/2mωm.

The Hamiltonian Ĥ = Ĥ0 + V̂ of the entire system consists of the unperturbed Hamilto-
nian

Ĥ0 = −1

2
h̄ω0 σ̂z + h̄ωmâ

†â, (1)

where σ̂z is the Pauli matrix operating on the states |g〉 and |e〉, and the perturbation

V̂ = −µ̂ ·E(x̂, t) = −2h̄Ω (σ̂+ + σ̂−) cos(kx̂− ωt), Ω = (µ0 ·E0)/2h̄. (2)

(a) [2 points] Suppose |ψ(t)〉 represents a time-dependent wavefunction of the system,
which satisfies the Schrödinger equation ih̄∂|ψ(t)〉/∂t = Ĥ(t)|ψ(t)〉. Let us intro-
duce a modified wavefunction |ψ̃(t)〉 defined via the following unitary transformation

|ψ(t)〉 = e−iĤ0t/h̄|ψ̃(t)〉. Show that the modified wave function satisfies a modified

Schrödinger equation ih̄∂|ψ̃(t)〉/∂t = Ṽ (t)|ψ̃(t)〉, where Ṽ (t) = eiĤ0t/h̄ V̂ (t) e−iĤ0t/h̄.
This representation of the wavefunction is called the “interaction representation”.

(b) [7 points] Using Eqs. (1) and (2), calculate the perturbation Ṽ (t) in the interaction
representation.

Hint: First calculate the operators eiĤ0t/h̄ σ̂± e
−iĤ0t/h̄ and eiĤ0t/h̄ â(†) e−iĤ0t/h̄ in the

interaction representation and then substitute the results into Eq. (2). Keep in mind
that the operators σ̂± and â(†) connect states with different energies.

(c) [4 points] Now suppose that the detuning δ = ω − ω0 is small compared with Ω,
i.e., |δ| � Ω. In the formula for Ṽ (t) obtained in Part (b), neglect the terms that
oscillate fast as e±i(ω+ω0)t and retain only the terms that oscillate slowly as e±iδt. This
approximation is called the “rotating wave approximation”.

(d) [7 points] Now suppose the detuning is an integer multiple of the harmonic oscillator
frequency: δ = jωm, where j is an integer (positive or negative). Assuming that the
parameter kx0 � 1 is small, perform the Taylor expansion of Ṽ (t) obtained in Part
(c) in powers of kx0 (which is known as the “Lamb-Dicke expansion”). Keep only the
lowest-order stationary term in the expansion (i.e., the term that does not depend on
time t) and neglect all other terms. Show that this term connects the quantum states
|g〉|n〉 and |e〉|n+ j〉 and calculate the matrix element V (n, j) = 〈e|〈n+ j| Ṽ |g〉|n〉 for
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j ≥ 0 and j < 0. Compare the photon energy h̄ω with the change of the total energy of
the atom and verify that your obtained result is consistent with energy conservation.

(e) [5 points] Suppose the system is initially prepared in the state |g〉|n〉 at t = 0. Taking
into account the matrix element V (n, j) derived in Part (d), show that the system will
be in a superposition of the states |g〉|n〉 and |e〉|n+ j〉 at a subsequent time. Calculate
the probabilities of finding the system in each of these two states at a time t. Show
that these probabilities oscillate in time and calculate the frequency and the period of
these oscillations. Sketch the probabilities as a function of t and calculate the time to
make a complete transition (with 100% probability) from the state |g〉|n〉 to the state
|e〉|n+ j〉. What is the name of these oscillations?
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Problem II.3

For scattering off a spherically symmetric potential located at the origin, the wavefunction
of a particle with the energy E = h̄2k2/2m for large r is often written as

ψ(z, r, θ) = eikz + f(θ)
eikr

r
. (1)

(a) [2 points] Interpret the two terms in Eq. (1).

(b) [4 points] By computing the incoming and outgoing probability fluxes, show that the
differential cross-section is

dσ

dΩ
= |f(θ)|2.

In terms of a partial wave expansion,

f(θ) =
1

k

∞∑
`=0

(2`+ 1) eiδ` sin δ` P`(cos θ), (2)

where δ` is the phase shift of the `-th partial wave due to the potential, and P` is the Legendre
polynomial. Below we will only study s-wave scattering with ` = 0, which dominates when
the energy E of the scattered particle is low, i.e., k is small.

(c) [4 points] Keeping only the term with ` = 0 in Eq. (2), write down expressions for the
differential and total cross-sections of scattering in terms of the phase shift δ0. Verify
that your result satisfies the optical theorem σ = (4π/k)Imf(0). What value of δ0

maximizes the scattering cross-section?

(d) [5 points] Now consider a spherically-symmetric square potential well of depth V
and radius R. For this attractive potential, derive a general transcendental equation
relating the s-wave phase shift δ0 to k, V , and R. Do not assume that k is small here.

Hint: Introduce the radial wave function u(r) via the relation ψ(r) = u(r)/r, apply the
appropriate boundary condition at r = 0, and match the boundary conditions at r = R.
At r →∞, the scattered wave in the `-th channel goes as u`(r) ∝ sin(kr− `π/2 + δ`).

(e) [5 points] Now consider the case of small k, where kR� 1 and h̄2k2/2m� V . Using
the general equation derived in Part (d), find the values of V that give |δ0| = π/2
(within given approximations). Sketch a plot of σ vs. V indicating significance of the
special values of V found in this Part.

(f) [5 points] Find the values of V where a new bound state forms in the well around
zero energy. Compare these values of V with the special values of V found in Part (e).
Comment qualitatively on a relation between formation of bound states and scattering
at low energies.

Information: The reduced Schrödinger equation for the `-th partial wave ψ`(r) = u`(r)/r is

− h̄2

2m

d2u`(r)

dr2
+
`(`+ 1)

2mr2
u`(r) + V (r)u`(r) = Eu`(r).
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Problem II.4

(a) [5 points] Consider a three-dimensional isotropic harmonic oscillator of frequency ω0.

What is the energy of the first excited state, relative to the ground state?
What is the degeneracy of the first excited state?
What is the orbital angular momentum L in the first excited state?

Suppose two spin-1/2 particles of equal masses are subject to the three-dimensional isotropic
harmonic oscillator potential. In the rest of the problem, assume that each particle occupies
the first excited energy level of the harmonic oscillator potential.

(b) [5 points] What are the permitted quantum numbers of the total orbital angular
momentum L = L1 + L2, of the total spin S = S1 + S2, and of the total angular
momentum J = J1 + J2 of the two particles?

(c) [5 points] If the two particles are distinguishable, how many linearly independent
states do they have?

(d) [5 points] Now assume that the two particles are indistinguishable fermions. How
many permitted linearly independent states do they have?

(e) [5 points] Suppose the two particles are electrons, which experience mutual Coulomb
repulsion. Taking into account the Coulomb repulsion qualitatively as a perturbation,
what are the quantum numbers S and L giving the lower energy state, and what is the
degeneracy of this state?

You do not need to calculate the energy correction due to the Coulomb interaction
explicitly. Assume that each particle occupies the first excited energy level of the
three-dimensional oscillator and neglect spin-orbit interaction.

Hint: The energy of Coulomb repulsion would be reduced, if the probability for the
two particles to be at the same point in space vanishes.
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Problem II.5

In this problem, we study stability of heavy nuclei with respect to β-decay. Consider a
nucleus with the number of protons Z and the total number of protons and neutrons A. In
order to obtain a stability criterion, we first need to derive a formula for the mass M of the
nucleus as a function of Z for a fixed A. It is given by a sum of four terms discussed below

M(Z,A) = M1 +M2 +M3 +M4. (1)

We treat mass and energy equivalently because of the Einstein relation E = Mc2.

(a) [2 points] First, ignore any interaction between protons and neutrons (collectively
called nucleons) and write a formula for M1 in terms of Z, A, and the masses of proton
(mp) and neutron (mn).

The term M2 represents binding energy due to nuclear forces, which are independent of
electric charge, so they are the same for protons and neutrons. Thus, we take M2 = f(A),
where f is a complicated unknown function of A. Because this term does not depend on Z,
it will be not important for our consideration.

(b) [4 points] Protons and neutrons are spin-1/2 fermions. Nuclear forces create a col-
lective attractive potential, where the nucleons occupy energy levels according to the
Pauli exclusion principle. How many protons and how many neutrons can be placed
in a given energy level? For a nucleus with N completely filled energy levels, what is
the relation between Z and A?

(c) [2 points] Starting from a nucleus with N completely filled energy levels, suppose we
increase Z → Z + 1 while keeping A constant, i.e., transform a neutron into a proton.
Following the Pauli exclusion principle, would this process increase or decrease the
energy of the nucleus? Repeat the same for the decrease Z → Z − 1 while keeping A
constant, i.e., transforming a proton into a neutron. Would this process increase or
decrease the energy of the nucleus? Ignore the difference between mp and mn here and
only focus on occupation of the energy levels dictated by the Pauli principle.

(d) [2 points] Treating Z as a continuous variable for large Z, write a simple, lowest-order,
smooth (differentiable) function M3 with an undetermined coefficient a3 to represent
the nuclear energy dependence on Z for small deviations of Z from the optimal number
(dependent on A) found in Part (c).

(e) [4 points] The term M4 represents electrostatic energy of the nucleus. Assume that the
electric charge of protons is distributed uniformly over a sphere of radius R. Because
nuclear matter has an approximately constant density, the volume of the nucleus is
proportional to the number of nucleons: R3 ∝ A, so R ∝ A1/3. Using an estimate or
dimensional analysis, write down how the term M4 depends on Z and A. Leave the
coefficient, a4, arbitrary and focus only on the dependence on Z and A.
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Collecting all terms together, you should find the following formula for nuclear mass

M(Z,A) =
[
Zmp + (A− Z)mn

]
+ f(A) + a3

(
Z − 1

2
A
)2

A
+ a4

Z2

A1/3
(2)

with some coefficients a3 and a4. The appearance of A in the denominator of M3 was not
derived above, so just take it for granted. Equation (2) is called Weizsäcker’s formula.

Now let us discuss stability of a nucleus with respect to β-decay, where an electron or a
positron (as well as a neutrino) is emitted from the nucleus. In this process, the number of
protons changes Z → Z ± 1, but the number of nucleons A remains constant.

(f) [4 points] Assuming that the electron or positron mass is negligibly small, formulate a
stability criterion with respect to β-decay in terms of the energy change M(Z±1, A)−
M(Z,A) of the nucleus. Treating Z as a continuos variable, derive conditions on the
first and second derivatives, ∂M/∂Z and ∂2M/∂Z2, for a nucleus to be stable with
respect to β-decay.

(g) [4 points] Apply the stability criterion derived in Part (f) to Weizsäcker’s formula (2)
and calculate the stable ZA for a given A. Do stable nuclei (with A greater than some
critical value A∗) have more protons than neutrons or less?

(h) [3 points] Derive a formula for the critical parameter A∗ introduced in Part (g) and
obtain its numerical value using the empirical valuesmn−mp = 1.3 MeV and a4 = 0.710
MeV. (The calculated value of A∗ turns out to be rather small.)
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