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Do any four problems. Each problem is worth 25 points. 

 

Put all answers on your answer sheets. 

 

Be sure your Qualifier ID Number is at the top right corner  

of each sheet and turn in solutions to four problems only.  
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Problem II.1

The Schrödinger equation for the helium atom cannot be solved exactly. However, if we
replace each of the Coulomb forces by a spring force, the system can be solved exactly. As
an example, consider the Hamiltonian H in 3-dimensional space given by
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with 0 < λ < 1. Here r1 and r2 represent the coordinates associated with the two electrons
and m is the electron mass.

(a) [5 points] Neglecting the last term (i.e. setting λ = 0) in H, determine the ground
state energy of the two (no longer coupled) 3D harmonic oscillators. Also write down
the ground state wave function.

(b) [5 points] Use this uncoupled ground state wave function and �rst order perturbation
theory to estimate the ground state energy of the full, coupled Hamiltonian H.

(c) [10 points] By a suitable change of variables, show how the full Hamiltonian H can
be transformed into the sum of two independent simple harmonic oscillators in 3D,
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Explicitly give the u = u(r1, r2) and v = v(r1, r2) that satisfy this transformation.

(d) [5 points] Determine the exact ground state energy of the system. How well does the
answer agree with your estimate from part (b) above?

Note: The normalized ground state wave function of a single harmonic oscillator in one
dimension is given by

ψ(x) =
(α
π

) 1
4
exp
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−αx2/2

)
, (3)

where α = mω/~.
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Problem II.2

Linearly polarized photons with energy ~ω � εB are incident on a target of deuterium,
which has a proton-neutron binding energy of εB. The radiation a�ects the quantum state
of the proton. (Ignore the electron in this problem.) Here you will apply time dependent
perturbation theory to the perturbation

H ′ = − e

Mc
p ·A, A = A0x̂ cos(kz − ωt), (1)

where e,M , and p are the proton's charge, mass and momentum, respectively. c is the speed
of light, and A is the vector potential of the incident radiation. Gaussian units are used in
this problem.

(a) [4 points] The energy density in an electromagnetic wave is u = E2/4π, with E the
electric �eld. Using this, show that the time-averaged number �ux of incident photons
is

ω

8π~c
A2

0. (2)

(b) [10 points] Neglecting all spin e�ects and using Fermi's golden rule, obtain a general
expression for the di�erential cross section for the emission of a proton into a plane
wave continuum state, φkf

, with momentum kf in terms of the (not yet speci�ed)
deuteron ground state wave function ψ0.
Hint: Energy conservation implies that only the term containing e−iωt in the vector
potential is relevant for this problem.
Hint: Because the transition is to a plane wave continuum state, you will need to
calculate a density of states�a convenient approach is to assume box quantization.

(c) [3 points] What is the general angular dependence of the di�erential cross section?

(d) [5 points] From (b) obtain an explicit formula for the photon-proton total cross section
as a function of ~ω using for the deuteron ground state wave function

ψ0(r) =

√
κ

2π

1

r
e−κr, (3)

which corresponds to an attractive delta-function potential between the neutron and
proton. Here ~2κ2/M = εB and r is the neutron-proton separation.

(e) [3 points] Given the potential described in part (d), explain why the plane wave
approximation is accurate for the matrix element of part (b).

2



Problem II.3

In his famous experiment of 1910, E. Rutherford scattered 5 MeV α particles from gold foil.
He later wrote: �It was quite the most incredible event that happened to me in my life. It
was as incredible as if you �red a 15-inch shell at a piece of tissue paper and it came back
and hit you�.

(a) [3 points] Given the era in which the experiment was performed, explain clearly and
carefully why Rutherford was so surprised.

(b) [12 points] Due to the presence of valence electrons in the gold atoms, the positive nu-
clear charge is compensated at large distances. This can be modeled with a �screened�
Coulomb potential:

V (r) = V0
e−Ar

r
, A ≥ 0.

Derive the di�erential scattering cross section (up to a factor of order unity but with
correct units) from this potential in the �rst Born approximation.

(c) [7 points] Using your result from (b), calculate the total cross section. What happens
in the limit of zero screening (A = 0), and why?

(d) [1 point] Why is it important that this backscattering experiment is performed on a
thin gold foil?

(e) [2 points] Suppose we perform the Rutherford experiment using an ordered crystal
of gold (instead of a thin amorphous �lm) and a highly collimated beam of α-particles
directed along a high symmetry axis. By considering the de Broglie wavelength of the
5 MeV α particles, describe what you would expect to observe in such an experiment.
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Problem II.4

This problem studies degeneracy of the energy levels of a spherically-symmetrical harmonic
oscillator in three dimensions. The eigenenergies E can be easily obtained in cartesian
coordinates as E = (N + 3

2
)~ω, N = Nx + Ny + Nz, where Nx, Ny, and Nz are the integer

quantum numbers for each cartesian direction. Clearly, there is a high degree of degeneracy
for the excited energy levels.

(a) [5 points] Because the problem is spherically symmetrical, the eigenstates |L,M〉 of
the orbital angular momentum are also the energy eigenstates. What values of L are
present in a degenerate multiplet speci�ed by N? Consider even and odd N .

(b) [5 points] Calculate degeneracy of the N = 2 multiplet, using

(i) the cartesian quantum numbers Nx, Ny, and Nz;

(ii) the spherical quantum numbers L and M .

Verify that both methods produce the same result.

(c) [5 points] Now suppose that a small perturbation breaks spherical symmetry of the
system. Consider the following Hamiltonian of the perturbation

H1 = α r5 Y 0
5 (θ, φ), (1)

where Y m
l (θ, φ) is a spherical harmonic, and α is a small parameter.

To the �rst order in α, does the perturbation H1 split energy levels of the degenerate
multiplets speci�ed by N?

You do not need to evaluate any integrals, but should explain your results on the basis
of symmetry considerations here and below.

(d) [5 points] Now, instead of (1), suppose that a Hamiltonian of perturbation is

H2 = β r6 Y 0
6 (θ, φ). (2)

Is M a good quantum number in the presence of the perturbation H2?

Is there a relation between eigenenergies of the states with M and −M?

(e) [5 points] For N = 3, how do the following states split to the �rst order in β due to
the perturbation H2?

(i) the states |L,M〉 with L = 1,

(ii) the states |L,M〉 with L = 3.
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Problem II.5

Consider a set of N neutral fermions (for example, neutrons) of mass m in a cubical box of
side L. (You may use �xed or periodic boundary conditions; state clearly which you choose.)
Assume that the fermions are nonrelativistic and non-interacting.

(a) [4 points] Write down expressions for
(i) the allowed wave vectors of the fermions.
(ii) their allowed energy levels.

(b) [5 points] Using the answers to (a) and the Pauli principle, obtain a relationship
between the maximum occupied energy level, the so-called Fermi energy εF (or the
corresponding Fermi wave number kF ), and the number density of the fermions n ≡
N/V at zero temperature, i.e. T = 0.

(c) [5 points] From (b), argue qualitatively that the fermions show an outward pressure
at T = 0, the so-called degeneracy pressure, which resists compression. Then calculate
explicitly the total energy E(N, V ) and thereby the degeneracy pressure for N non-
relativistic fermions in a box of volume V in terms of N and V . [Note that the shape
of the box does not matter for large V .]

(d) [6 points]
(i) Using Newtonian physics, calculate the (inward) gravitational �pressure" of a (spher-
ical) star composed of such fermions that has a mass M and volume V = (4/3)πR3,
with uniform density ρ = M/V and radius R. Express your answer in extensive vari-
ables (not ρ).
(ii) From the condition of balance between the gravitational pressure and the degener-
acy pressure, �nd the relationship between N and V for the [neutron] star and thence
the dependence of R onM . (The relation between the two should involve only numbers
and fundamental constants, not other variables.)

(e) [2 points] For the assumption of nonrelativistic behavior to be valid what inequality
should E/N satisfy?

(f) [2 points] Suppose the fermion has spin 3/2 (a hypothetical assumption since none has
been discovered yet). How would your answer for the degeneracy and the gravitational
pressure change? (Just a short answer. Indicate how the key parameters change.)

(g) [1 point] Suppose the particle has spin 1. How would your answer change? (Short
answer. Do not redo the whole problem.)
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