Michelle Girvan Named Distinguished Scholar-Teacher

Professor Michelle Girvan has been named a University of Maryland Distinguished Scholar-Teacher. The Distinguished Scholar-Teacher Program, established in 1978, honors a small number of faculty members each year who have demonstrated notable success in both scholarship and teaching.Michelle GirvanMichelle Girvan

Girvan works in network science, which focuses on complex connectivity patterns among interacting units. This interdisciplinary field builds upon techniques from physics and applied mathematics in order to gain in new insights in systems ranging from brain networks to social networks to power grids. Girvan received her Ph.D. in Physics from Cornell University, and has held appointments at the Santa Fe Institute and the Institute for Advanced Study. She joined the Department of Physics in 2007 and holds appointments in the Institute for Physical Sciences and Technology and the Institute for Research in Electronics and Applied Physics.

In 2017, Girvan received the Richard A. Ferrell Distinguished Faculty Fellowship and was elected a Fellow of the American Physical Society for seminal contributions to the nonlinear and statistical physics of complex networks, including characterization of network structures and dynamics, and interdisciplinary applications.  In 2020, she was elected a Fellow of the Network Science Society.

Since 2016, Dr. Girvan has served as director of UMD’s COMBINE (Computation and Mathematics for Biological Networks program, initially funded by the National Science Foundation. COMBINE’s interdisciplinary curriculum integrated quantitative modeling methods from physics and mathematics with data processing, analysis, and visualization tools from computer science to gain deeper insights into living systems. Thus far, COMBINE has trained more than 60 graduate students.

Early in the COVID-19 pandemic, as part of the COMBINE program, Girvan launched #Net_COVID, an online series that explored and explained network epidemiology in the time of Coronavirus.

Girvan has served as thesis advisor for 12 students in four different disciplines: Physics, Applied Math and Scientific Computing, Biophysics and Math; she has co-advised five others (four in Physics and one in Chemical Physics).  

Girvan will give her Distinguished Scholar-Teacher lecture on December 13, 2022.

Sylvester James Gates, Jr. Returns to UMD Faculty as Clark Leadership Chair in Science

Sylvester James Gates, Jr., a member of the National Academy of Sciences and recipient of the National Medal of Science, will rejoin the University of Maryland faculty on July 1, 2022. He will hold the Clark Leadership Chair in Science and a joint appointment in the Department of Physics and the School of Public Policy. He will also hold the titles of Distinguished University Professor and Regents Professor.

“Jim Gates is a truly legendary figure in science and education. His lifelong fascination with fundamental physics has inspired generations of students and scientists worldwide,” said Amitabh Varshney, dean of UMD’s College of Computer, Mathematical, and Natural Sciences. “We’ve benefited from his counsel and advocacy for nearly 40 years, and we are delighted that our faculty members and students will continue to have opportunities to interact with him here at the University of Maryland.”

Gates is well-known for his seminal work in supersymmetry, supergravity and string theory. He has made milestone discoveries in the mathematics of particle theory and the geometry of gravity. In addition to his research achievements, Gates also distinguished himself as a powerful advocate for education and a charismatic ambassador for American science around the world.

“The University of Maryland, College Park has been the main secret sauce turbo-charging my professional activities and I am looking forward to this once more!” Gates said.

In 2011, Gates received the National Medal of Science “for contributions to the mathematics of supersymmetry in particle, field, and string theories and extraordinary efforts to engage the public on the beauty and wonder of fundamental physics.” He served on the President’s Council of Advisors on Science and Technology (PCAST) under Barack Obama and was the vice president of the Maryland State Board of Education.

“Professor Gates has applied his knowledge and research to great effect in the policy arena,” said Robert Orr, dean of UMD’s School of Public Policy. “He has also been instrumental in educating our students about the crucial nexus between science and technology and the policy world.”

Gates was a faculty member in UMD’s Department of Physics from 1984 until 2017 and maintained ties since then as a College Park Professor of Physics. Since 2017, he also held appointments at the Massachusetts Institute of Technology, Howard University, Dartmouth College and Brown University.  He has also served as president of both the National Society of Black Physicists and the American Physical Society.

“Having Jim Gates return is a boon to our entire campus,” said Steve Rolston, chair of UMD’s Department of Physics. “His international stature as an educator and science proponent is particularly crucial in our current times.”

University System of Maryland Chancellor Emeritus William E. “Brit” Kirwan has stated, “Jim is the academic version of a triple-threat: great researcher, gifted teacher and totally dedicated to public service. He is simply amazing.”

The Clark Leadership Chair in Science that Gates will hold was established through the A. James & Alice B. Clark Foundation’s Building Together: An Investment for Maryland.


UMD Leads Quest for Better Detectors

The discovery of the Higgs boson, announced on July 4, 2012 by researchers working at CERN’s Large Hadron Collider (LHC), was a landmark in understanding fundamental particles and their interactions. Afterward, François Englert and Peter Higgs received the Nobel Prize in Physics for predicting the existence of the Higgs boson, without which fundamental particles such as quarks and bosons would not have mass. 

Sarah Eno, Alberto Belloni, Nick Hadley, Andris Skuja and Drew Baden, along with UMD Physics students and postdocs, were among the contributors to the LHC achievement.

A full calorimetry system for a collider detector.  The crystal ecal is shown in blue and purple and is labeled E1 and E2.A full calorimetry system for a collider detector. The crystal ecal is shown in blue and purple and is labeled E1 and E2.To continue studying the Higgs boson and its role in the universe, scientists are planning the construction of the next great collider, a “Higgs factory”. The US particle physics community uses the Snowmass planning process to identify and direct research priorities. UMD’s Zohreh Davoudi, Manuel Franco Sevilla and Alberto Belloni are leading the writing of various chapters in the next Snowmass report, which will describe in detail (among other things) the compelling need to make very precise measurements of the properties of the Higgs boson.

Existing and planned particle detectors cannot do precision measurements of both electrons/photons (which interact primarily via the electromagnetic force) and hadrons (bound states of quarks that interact mostly via the strong force). For future large colliders, Eno, along with Chris Tully of Princeton University and Marco Lucchini of Università degli Studi di Milano-Bicocca, recently proposed a dual-readout crystal electromagnetic calorimeter.  The idea builds on earlier work for the DREAM/RD50/IDEA collaborations, but will utilize machine learning, novel particle reconstruction algorithms and new types of photodetectors, allowing excellent resolution for all types of particles and a clearer understanding of the Higgs boson.Typical Z to dijet event, showing charged tracks in the tracker, hits in the electromagnetic calorimeter, and then hits in the spaghetti-type dual-readout section.Typical Z to dijet event, showing charged tracks in the tracker, hits in the electromagnetic calorimeter, and then hits in the spaghetti-type dual-readout section.

The Department of Energy’s Instrumentation Frontier program recently awarded $1.4 million over three years for design of the new device, with Eno as Principal Investigator. Eno will lead a collaboration from Princeton, the University of Virginia, Texas Tech University, Caltech, the University of Michigan, MIT, Purdue, University, Argonne National Laboratory, Oak Ridge National Laboratory, and Fermi National Accelerator Laboratory. Scientists from Italy and South Korea are also participating.

Eno, whose research has focused on precision studies of the properties of the W boson, tests of QCD using Z bosons, and searches for exotic particles predicted by theories of physics beyond the Standard Model, has long worked on calorimeters, specifically in measuring the momentums of jets and missing transverse energy and studies of radiation damage to their plastic components. She is a UMD Distinguished Scholar-Teacher and a Fellow of the American Physical Society and the American Association for the Advancement of Science.

The Snowmass submission outlining calorimeter aspirations, with Eno as lead author, can be found here:  https://arxiv.org/abs/2203.04312


New Company Adds to College Park Quantum Ecosystem

A new College Park-based company founded by a University of Maryland professor further solidifies the area’s status as a global hotspot for quantum-related start-ups.

Quantum Catalyzer (Q-Cat) was created by Ronald Walsworth, a serial entrepreneur and director of UMD’s Quantum Technology Center. The company’s mission is to identify the most promising ideas in quantum technology and create companies that can translate that technology into solutions for society.

“While traditional technology incubators support young companies already in existence, Q-Cat has a unique model where we help identify technology well-suited for commercialization and build companies from scratch, serving as co-founders and providing critical, multifaceted support to help them grow,” said Walsworth, who has appointments in UMD’s physics and electrical and computer engineering departments.

Examples of technological advances Q-Cat hopes to explore include efficient green energy generation at scale, more reliable navigation, next-generation microelectronics and lower-cost health care imaging.

Q-Cat joins the ranks of IonQ and other companies fueling College Park’s reputation as a world leader in quantum commercialization.

“Just as the first quantum revolution roughly a century ago led to the development of transistors, lasers and other technologies we still rely on today, we are now in the early stages of the second quantum revolution,” said Gregory F. Ball, UMD vice president for research. “As research and innovation continue to develop and we understand more about the many ways in which quantum science will impact society in the future, we will need more quantum entrepreneurs to step up and help translate those discoveries into products and services for the public.”

According to research by McKinsey, investments in quantum start-ups doubled from 2020 to 2021, exceeding $1.7 billion last year. To date, Q-Cat has created four quantum companies from technology developed in the Walsworth and collaborator labs.

Original story from UMD Today:CMNS: https://today.umd.edu/briefs/professors-new-company-adds-to-college-park-quantum-ecosystem


Bennewitz Receives DOE Fellowship

Elizabeth Bennewitz, a first-year physics graduate student, has received a Department of Energy Computational Science Graduate Fellowship(link is external). Bennewitz is one of 33 recipients in 2022—the largest number of students this program has ever selected in a year.

The fellowships provide financial support, including tuition and a stipend, to each fellow for up to four years of their education. Additionally, Bennewitz and the other recipients will gain practical experience working in a DOE laboratory for three months.

“I am very honored to receive this fellowship and am grateful for the freedom it gives me to explore my interests in quantum information and computing,” Bennewitz says. “I'm also very thankElizabeth Bennewitz (credit:  Dan Spencer)Elizabeth Bennewitz (credit: Dan Spencer)ful for all the support and guidance I received from my professors and peers along the way at Bowdoin College, Perimeter(link is external) and here at Maryland.”

The fellowship is funded by the DOE's Office of Science(link is external) and the National Nuclear Security Administration's Office of Defense Programs(link is external) in order to train future leaders in the field of computational science.

“[The] Office of Science is proud to support the training of a diverse and accomplished group of students to become leaders among the next generation of computational scientists,” says Barbara Helland, DOE Associate Director of Science for Advanced Scientific Computing Research, in a press release. “As evidenced by the success of the current CSGF alumni, the new fellows’ research will advance efforts in a wide range of science and engineering topics that benefit Administration priorities and the American people.”

Bennewitz is working with Joint Quantum Institute and Joint Center for Quantum Information and Computer Science (QuICS)  Fellow Alexey Gorshkov. She has chosen to research large collections of interacting quantum particles—called many-body quantum systems. The physics of quantum interactions is an area of cutting-edge research and is important to quantum computer technologies. Many-body quantum interactions can also be used to develop simulations to explore challenging problems in materials science and chemistry.

“In my research, I look forward to using high-performance computing techniques to further our understanding of quantum systems as well as studying the high-performance computing capabilities of quantum systems themselves,” Bennewitz says. 

In her first year as a graduate student, Bennewitz has started exploring ways that quantum simulators might help researchers understand the interactions that are responsible for holding particles together to form the nuclei that are the cores of atoms.

“Echoing my thoughts from when Elizabeth was named a finalist for the Hertz fellowship, I'm again very happy for Elizabeth, and I'm again excited and honored that she chose to work with my group,” Gorshkov says.

Original story by Bailey Bedford: https://jqi.umd.edu/news/jqi-graduate-student-receives-doe-fellowship