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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

 

You may keep this packet with the questions after the exam. 

 



Problem II.1

The Schrödinger equation for the helium atom cannot be solved exactly. However, if we
replace each of the Coulomb forces by a spring force, the system can be solved exactly. As
an example, consider the Hamiltonian H in 3-dimensional space given by

H = − ~2
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with 0 ≤ λ < 1. Here r1 and r2 represent the coordinates associated with the two electrons
and m is the electron mass.

(a) [5 points] Neglecting the last term in H (i.e., setting λ = 0), determine the ground
state energy of the two (uncoupled) 3D harmonic oscillators. Also write down the
ground state wave function.

(b) [8 points] Use this uncoupled ground state wave function and first order perturbation
theory to estimate the ground state energy of the full, coupled Hamiltonian H.

(c) [6 points] By a suitable change of variables, show how the full Hamiltonian H can be
transformed into the sum of two independent simple harmonic oscillators in 3D,

H =

[
− ~2

2m
∇2
u +

1

2
mω2u2

]
+

[
− ~2

2m
∇2
v +

1

2
(1− λ)mω2v2

]
. (2)

Explicitly give the u = u(r1, r2) and v = v(r1, r2) that satisfy this transformation.

(d) [6 points] Determine the exact ground state energy of the system.

How well does this answer agree with your estimate from part (b) above in the small-λ
limit?

Possibly useful:

The normalized ground state wave function of a single harmonic oscillator in one dimen-
sion is given by
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Problem II.2

At times t < 0, a system described by a Hamiltonian H is in the quantum state |n〉 with the
energy En

H|n〉 = En|n〉.

At time t = 0, the system is perturbed by an external potential V , so the system Hamiltonian
suddenly changes from H to H + V for t > 0. Assume H and V to be time-independent.
Let us denote the new set of energy eigenstates by primes in order to distinguish it from the
old set:

(H + V )|m′〉 = Em′ |m′〉.

(a) [5 points]

(i) What is the probability of finding the system in a new eigenstate |m′〉 for t > 0,
given that it was in the state |n〉 at t < 0?

(ii) What is the change in the energy expectation value of the system
∆E = 〈E(t > 0)〉 − 〈E(t < 0)〉, in terms of matrix elements of V ?

(b) [12 points] Suppose H is the Hamiltonian of a one-dimensional infinite square-well
potential of width L (from x = 0 to L), and the system is in the ground state |n = 1〉
of this potential at t < 0. At t = 0, the width of the well suddenly doubles to 2L (from
x = 0 to 2L) and keeps the new width for all t > 0.

(i) Explicitly calculate the probability of finding the system in an energy eigenstate
|m′〉 of the expanded well for t > 0. Point out for which values of m′ the probability
vanishes.

(ii) What is ∆E in this case?

(c) [8 points] Suppose H is the Hamiltonian of a one-dimensional infinite square-well
potential located at 0 < x < L, and the system is in the ground state |n = 1〉 of this
potential at t < 0. At t > 0, the following perturbation is applied:

V (x) =

{
V0 for 0 < x < L/3,
0 for L/3 < x < L.

Explicitly calculate ∆E in this case. Do not assume that V0 is small.

Possibly useful:

sinα sin β =
cos(α− β)− cos(α + β)
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Problem II.3

This problem studies interplay between scattering and bound states, and shows that bound
states can be obtained as pole singularities in the scattering matrix Ŝ.

Consider an arbitrary potential V (x) in one dimension vanishing for |x| > a. The spatial
wave functions ψ(x) of energy E are superpositions of plane waves outside of the potential:

ψ(x) =

{
Aeikx +Be−ikx, x ≤ −a,
Ceikx +De−ikx, x ≥ a,

E =
~2k2

2m
. (1)

(a) [2 points] Explain why the terms with A and D in Eq. (1) represent the incoming
waves, whereas the terms with B and C represent the outgoing waves.

(b) [5 points] A linear relation between the incoming and outgoing waves is represented
by the 2× 2 scattering matrix Ŝ:(

C
B

)
= Ŝ

(
A
D

)
, Ŝ =

(
S11 S12

S21 S22

)
. (2)

Show that the matrix Ŝ is unitary, i.e. Ŝ†Ŝ = 1̂. Hint: Use probability flux conserva-
tion.

(c) [5 points] Suppose the potential V (x) = V (−x) is symmetric. In this case, you may
consider a symmetric wave function ψs(−x) = ψs(x) with A = D and B = C.

Using probability flux conservation, show that the outgoing waves in ψs(x) differ from
the incoming waves by a phase factor eiφ. Prove the following relation for the matrix
elements: S11 + S12 = S22 + S21 = eiφ.

(d) [5 points] Now consider a specific example: the delta-function potential

V (x) = β δ(x), γ = β
m

~2
, (3)

where β and γ are coefficients representing the strength of the potential. Calculate the
sum of the matrix elements S11 + S12 = eiφ in terms of γ and k.

Hint: Integrating Schrödinger’s equation around x = 0, find a condition on ψ(0) and
the derivatives ψ′(±ε) at ε → 0. Applying this condition to ψs(x) in Eq. (1), find eiφ
in terms of γ and k.

(e) [6 points] Now let us formally treat k = k′ + ik′′ as a complex variable with real and
imaginary parts k′ and k′′. Show that S11 + S12 as a function of the complex variable
k has a pole singularity on the imaginary axis at k′′ > 0 for γ < 0. Examining Eqs. (1)
and (2), show that the wave function ψs(x) in this case corresponds to a bound state
and find its exponential decay rate vs. |x|. Substituting the imaginary k into Eq. (1)
for E, find the energy of this bound state.

(f) [2 points] Discuss briefly how the consideration in Part (e) changes when the potential
(3) is repulsive with γ > 0.
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Problem II.4

Two particles interact via a spin-spin Hamiltonian term AS1 · S2, where A is a positive
constant and S1,2 are the spin angular momenta of the two particles. Particle 1 has spin 1
and magnetic moment µ1 = −µB

~ S1, whereas particle 2 has spin 1
2
and zero magnetic moment.

(a) [6 points] Without any magnetic field present, what are the energy levels of this
system in terms of A and ~? And what is the degree of degeneracy of each level?

(b) [8 points] Write down all the energy eigenstates corresponding to the system energy
levels in part (a), expressed as linear superpositions of products of single-particle spin
states (i.e., terms of the form |j1,m1〉 ⊗ |j2,m2〉 ).

Now consider what happens when the system is in a magnetic field of strength B.

(c) [4 points] What are the approximate energy eigenstates and eigenvalues if B � A~2
µB

?

(d) [7 points] Sketch the approximate energy eigenvalues as functions of magnetic field
strength, from 0 ≤ B > A~2

µB
, and label the appropriate states. Do not neglect the

spin-spin interaction term from parts (a) and (b).

Possibly useful:

(V1 + V2)2 = V1
2 + V2

2 + 2V1 ·V2 for vectors V1 and V2

J±|j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉
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Problem II.5

The notion of negative absolute temperature is unusual but it can occur in, for example,
quantum spin systems. To see this, consider a quantum system of N noninteracting magnetic
dipoles each with spin 1/2, having a magnetic moment µB, placed in a magnetic field B.
Assume a canonical ensemble description of this spin system with a temperature T = 1/(kβ),
where k is Boltzmann’s constant.

(a) [5 points] Write down the energy levels of this two-level system in terms of µB and
B, the magnitude of the magnetic field. (You may wish to use a symbol such as ε to
represent a relevant energy.)
Then determine the partition function ZN in terms of β.

(b) [9 points] Calculate the free energy F , the entropy S, and the internal energy U of
this system as a function of N and β.

A schematic plot of s ≡ S
Nk

versus u ≡ U
NµBB

is provided in the figure below to aid you in
answering the following questions:
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(c) [5 points] What is the temperature T of the magnetic system in terms of the thermo-
dynamic quantities in part (b)?
Copy the figure onto your answer sheet and indicate on the figure: (i) the places where
T = 0, (ii) the region where negative temperature T < 0 appears, (iii) indicate with one
arrow on each branch the direction of increasing T , and (iv) what is the temperature
at the global maximum of the curve?

(d) [2 points] Explain what energy state the system is in at T = 0.

(e) [4 points] For each of the following, if you can’t calculate the temperature exactly,
describe it qualitatively.

(i) If a system of this nature at T = 300K is brought into contact with an identical
system at T = −300K, what is the final equilibrium temperature?

(ii) If a system of this nature at T = 300K is brought into contact with an identical
system at T = −100K, what is the final equilibrium temperature?
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