
Problem II.1

Consider a quantum particle of mass m con�ned within a one-dimensional in�nite square-
well potential in the presence of an additional repulsive delta-potential in the middle of the
well:

U(x) =

{
β δ(x), if − a < x < a;
∞, if |x| > a,

(1)

where δ(x) is the Dirac δ-function and β ≥ 0. The potential U(x) is illustrated below.

(a) [2 points] Consider the parity (re�ection) operator P̂ , whose action on an arbitrary
function ψ(x) is de�ned as follows:

P̂ ψ(x) = ψ(−x) .

Explain (brie�y) why the eigenstates of the potential U(x), given by Eq. (1), should
also be eigenstates of the parity operator.

Since the potential U(x) is an even function, the Hamiltonian commutes with the parity
operator, and therefore both the parity and energy are good quantum numbers, which
can be determined simultaneously.

(b) [4 points] Consider the stationary Schrödinger equation with the energy E correspond-
ing to the potential (1). What boundary conditions must the wave function satisfy at
x = ±a? Also, prove that the wave function satis�es the following matching condition
at x = 0:

ψ′(0+)− ψ′(0−) =
2mβ

~2
ψ(0), (2)

where the left-hand side represents the di�erence of the derivatives ψ′ = dψ/dx taken
in the limit x→ 0 from the positive side (x > 0) and from the negative side (x < 0).

See, for instance,
http://physicspages.com/pdf/Griffiths%20QM/Griffiths%20Problems%2002.44.pdf .
The wave functions must satisfy the boundary conditions ψ(±a) = 0.

To �nd the matching condition at x = 0, integrate the Schrödinger equation with
U(x) = β δ(x) within an in�nitesimally small vicinity of the point x = 0 and use
the continuity of the wave function, ψ(0−) = ψ(0+), and the properties of the Dirac
δ-function.
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(c) [3 points] Show that the odd-parity (−) and even-parity (+) wave function forms
below both satisfy the Schrödinger equation everywhere that the potential is �nite,
and determine a relationship between the parameters k± and the energy E.

ψ−(x) = sin [k− x] (3)

ψ+(x) = sin [k+ (|x| − a)] (4)

For |x| < a and x 6= 0, the potential U = 0, so the wave functions must satisfy the
Schrödinger equation for a free particle

− ~2

2m
ψ′′(x) = Eψ(x). (5)

Substituting (3) and (4) into (5), we �nd that these wave functions do satisfy the
Schrödinger equation, and E± = ~2k2

±/(2m).

(d) [4 points] Apply the boundary conditions formulated above to the odd-parity wave
function ψ−(x) from Eq. (3) and determine the allowed values of k− and the corre-
sponding eigenenergies E−. How are the eigenenergies E− a�ected by the presence of
the δ-function potential in the middle of the well?

Because the odd-parity states ψ−(x) vanish at x = 0, they always satisfy the matching
condition (2) and are una�ected by the presence of the δ-function potential. The
boundary condition ψ(±a) = 0 gives k−a = nπ and

E
(n)
− =

π2~2n2

2ma2
, with n = 1, 2, 3, . . . . (6)

Eq. (6) corresponds to the energies E = π2~2N2/2m(2a)2 for a particle in a box of the
width 2a for the even values of N = 2n, which corresponds to the odd wave functions.

(e) [4 points] Prove that the even-parity wave function ψ+(x) from Eq. (4) is an eigenfunc-
tion of the Schrödinger equation if the wave vector k+ satis�es the following equation:

tan(k+a) = −k+a

ξ
, where ξ =

maβ

~2
. (7)

From Eqs. (1) and (7), determine the dimensionality of β and ξ.

Eq. (4) satis�es the boundary conditions ψ(±a) = 0 by construction.

Substituting (4) into (2), we obtain (7).

ξ is dimensionless, and β has the dimensionality of Energy*Length.

(f) [4 points] Examine Eq. (7) in the limit ξ → 0, which corresponds to a vanishingly
weak δ-function potential. Determine the allowed values of k+ and the corresponding
even-parity energy levels E+ in this case. Compare your result with the well-known
spectrum of an in�nite potential well without δ-function potential (β = 0).
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When ξ = 0, Eq. (7) gives tan(k+a) = ∞, so k+a = Nπ/2, where N is odd. The
corresponding energies are

E
(N)
+ =

π2~2N2

2m(2a)2
, with N = 1, 3, 5 . . . . (8)

Eq. (8) corresponds to the energies of a particle in a box of the width 2a for the odd
values of N , which corresponds to the even wave functions.

(g) [4 points] Now consider the limit of a very strong δ-function potential: ξ → ∞.
Determine the allowed values of k+ and the corresponding energy levels E+ from Eq. (7)
in this limit. How does this energy spectrum of even-parity eigenstates compare with
the energy spectrum of the odd-parity eigenstates found in part (d)?

When ξ = ∞, Eq. (7) gives tan(k+a) = 0, so k+a = nπ. The corresponding energies
are

E
(n)
+ =

π2~2n2

2ma2
, with n = 1, 2, 3, . . . . (9)

The energies (9) are the same as in Eq. (6).
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Problem II.2

A diatomic molecule with moment of inertia I is constrained to rotate freely in the xy plane
with angular momentum Lz. The molecule has a permanent electric dipole moment P along
the molecule axis, whose magnitude P0 is independent of the rotational motion or external
conditions. The Hamiltonian for the quantum system is

Ĥ =
(L̂z)

2

2I
. (1)

�
�
�
�
�
�
��3

6

-

y

x
]φ

~

~
P

(a) [6 points] The orientation of the dipole moment P relative to the x axis is speci�ed
by the angle φ as shown in the �gure. Write down the Hamiltonian (1) in the φ
representation and obtain the energy eigenvalues En and eigenfunctions ψn(φ). What
is the degeneracy of each eigenstate?

The L̂z operator is i~ ∂
∂φ
, so Ĥ = −~2

2I
∂2

∂φ2 .

The time-independent Schrödinger equation is Ĥψ = Eψ, which in this case becomes
the di�erential equation

−~2

2I

∂2ψ

∂φ2
= Eψ . (2)

This is immediately recognizable as a wave equation, with solutions of the form ψ(φ) =
Aeibφ, with A = 1/

√
2π to normalize. The solutions are all the wavefunctions which

are azimuthally periodic, i.e. ψ(φ+2π) = ψ(φ). That implies that b must be an integer
n (positive, zero, or negative). Substituting, we �nd that n must satisfy

~2n2

2I
= E . (3)

Therefore, the energy eigenvalues are

En =
n2~2

2I
. (4)

The n = 0 state (with zero energy) is not degenerate, but all other energy levels have
twofold degeneracy (n and −n).
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(b) [5 points] Now a weak uniform electric �eld E = E0 êx is applied to the system along
the x axis, adding a term −P ·E to the Hamiltonian. Write down the new Hamiltonian
for the system in terms of φ, then use perturbation theory to calculate the shifts of
the energy eigenvalues to �rst order in E0. Does the perturbation lift the degeneracy
to �rst order in E0?
The new Hamiltonian is

Ĥ = Ĥ0 + V (φ) =
−~2

2I

∂2

∂φ2
− P0E0 cosφ . (5)

The perturbation that was added to the Hamiltonian is ∆Ĥ = −P0E0 cosφ . The
simplest version of perturbation theory assumes that the states are not degenerate, in
which case the energy shifts are given by ∆En = 〈n|∆Ĥ|n〉 (where the |n〉 states are
the eigenstates of the unperturbed Hamiltonian). The fact that we have degenerate
states here could complicate things. . . but it turns out it doesn't, because the matrix
elements between the degenerate states are all zero:

〈−n|∆Ĥ|n〉 =

∫ 2π

0

dφ
1√
2π
e−i(−n)φ (−P0E0 cosφ)

1√
2π
einφ (6)

=
−P0E0

2π

∫ 2π

0

dφ ei2nφ cosφ = 0 . (7)

Anyway, that just goes to justify that the energy shifts are given by the simple form:

∆En = 〈n|∆Ĥ|n〉 =

∫ 2π

0

dφ
1√
2π
e−inφ (−P0E0 cosφ)

1√
2π
einφ (8)

=
−P0E0

2π

∫ 2π

0

dφ cosφ = 0 . (9)

So there are no energy level shifts to �rst order, and the degeneracy is not lifted.

(c) [6 points] Use perturbation theory to calculate the corresponding perturbed wave
functions to �rst order in E0.
Perturbation theory tells us that the perturbed wavefunctions are given in terms of the
unperturbed ones ψ

(0)
n by

ψn = ψ(0)
n +

∑
k 6=n

〈k|∆Ĥ|n〉
E

(0)
n − E(0)

k

ψ
(0)
k (10)

with

〈k|∆Ĥ|n〉 =

∫ 2π

0

dφ
1√
2π
e−i(k)φ (−P0E0 cosφ)

1√
2π
einφ (11)

=
−P0E0

2π

∫ 2π

0

dφ ei(n−k)φ
eiφ + e−iφ

2
(12)

=
−P0E0

4π

∫ 2π

0

dφ
(
ei(n−k+1)φ + ei(n−k−1)φ

)
(13)

=
−P0E0

2
(δn−k+1 + δn−k−1) . (14)
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In other words, this picks out two terms that give nonzero contributions, with k = n+1
and k = n− 1. So the perturbed wavefunction is

ψn = ψ(0)
n −

−P0E0
2

[
1

E
(0)
n − E(0)

n+1

ψ
(0)
n+1 +

1

E
(0)
n − E(0)

n−1

ψ
(0)
n−1

]
. (15)

Those energy factors involve

E(0)
n − E

(0)
n+1 =

(
n2 − (n+ 1)2

) ~2

2I
= (−2n− 1)

~2

2I
= −(2n+ 1)

~2

2I
(16)

E(0)
n − E

(0)
n−1 =

(
n2 − (n− 1)2

) ~2

2I
= (2n− 1)

~2

2I
(17)

and inserting the wavefunctions ψ
(0)
n = einφ/

√
2π,

ψn =
einφ√

2π
− P0E0

2

2I

~2

[
−1

2n+ 1

ei(n+1)φ

√
2π

+
1

2n− 1

ei(n−1)φ

√
2π

]
(18)

=
einφ√

2π

[
1 +
P0E0I

~2

(
eiφ

2n+ 1
− e−iφ

2n− 1

)]
. (19)

(d) [5 points] Evaluate the expectation value 〈Px〉 of the x component of the dipole
moment operator P in each energy eigenstate; denote the expectation value for state
ψn by 〈Px〉n. From that, deduce the electric polarizability

αn = 〈Px〉n / E0 (20)

of each state.

The expectation value for the nth eigenstate is

〈Px〉n = 〈n|P cosφ|n〉 (21)

=

∫ 2π

0

dφψ∗n(φ) (P0 cosφ)ψn(φ) (22)

=
P0

2π

∫ 2π

0

dφ

[
1 +
P0E0I

~2

(
e−iφ

2n+ 1
− eiφ

2n− 1

)]
(23)

×
(
eiφ + e−iφ

2

)[
1 +
P0E0I

~2

(
eiφ

2n+ 1
− e−iφ

2n− 1

)]
. (24)

Expanding the integrand gives us 18 terms, but only the ones without any eiφ factor
give a nonzero integral. There are four such terms in two identical pairs. They give:

〈Px〉n =
P0

2π

P0E0I
2~2

2π

(
2

2n+ 1
− 2

2n− 1

)
(25)

=
P2

0E0I
2~2

(−4)

(2n+ 1)(2n− 1)
(26)

=
−2P2

0E0I
~2 (4n2 − 1)

. (27)
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So the polarizability is

αn ≡ 〈Px〉n/E0 =
−2P2

0I

~2 (4n2 − 1)
. (28)

(e) [3 points] Provide a physical explanation for the di�erence in the signs of α for the
lowest energy eigenstate versus the other states. (Hint: Classically, would the dipole
spend more time aligned or anti-aligned with the applied �eld?)

The polarizability is positive for n = 0 and negative for all n 6= 0. For the n = 0 state,
there is no rotation so the dipole is free to align with the applied electric �eld. For
any n 6= 0 state, the dipole is rotating; conservation of energy implies that it rotates
faster when the potential energy is lower (aligned with the �eld) and slower when the
potential energy is higher (anti-aligned). That means it will spend less time aligned
with the �eld, so on average it will be slightly anti-aligned, which is what negative
polarizability means.
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Problem II.3

The di�erential cross-section dσ/dΩ for the elastic scattering of a particle of mass m from a
target characterized by a potential V (r) is

dσ

dΩ
= |f(k,k′)|2, (1)

where ~k and ~k′ are the incident and scattered momenta of the particle, with |k| = |k′|.
In the �rst-order Born approximation, the scattering amplitude f(k,k′) can be written as

f(k,k′) = − 1

4π

2m

~2

∫
d3r ei(k−k′)·r V (r) . (2)

The �rst-order Born approximation is valid if∣∣∣∣2m~2

1

4π

∫
d3r

eikr

r
V (r)eik·r

∣∣∣∣� 1 . (3)

(a) [2 points] Show that q ≡ |k − k′| can be written as

q = 2|k| sin (θ/2), (4)

where θ is the angle between k and k′ (the scattering angle).

This can be shown, for instance, using the law of cosines and the trig identity sin2 (θ/2) =
1
2
(1− cos θ).

(b) [5 points] For a spherically symmetric potential V (r), show that Eq. (2) reduces to

f(θ) = −2m

~2

1

q

∫ ∞
0

dr r V (r) sin (qr) (5)

expressed using the direct correspondence between q and θ.

See, for example, section 7.2 of Sakurai (Modern Quantum Mechanics), or Hitoshi
Murayama's notes online at http://hitoshi.berkeley.edu/221b/scattering2.pdf .

(c) [5 points] Let V (r) be the Yukawa potential

V (r) =
V0

µ

e−µr

r
. (6)

Show that in this case, the scattering amplitude is

f(θ) =
2mV0

~2µ

1

q2 + µ2
. (7)
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(d) [5 points] Recall the Coulomb potential

VC(r) =
ZZ ′e2

4πr
, (8)

and the Rutherford formula for Coulomb scattering

dσC
dΩ

=
4m2Z2Z

′2e4

~4

1

16 k4 sin4(θ/2)
, (9)

where Ze is the electric charge of the scattered particle and Z ′e is the electric charge of
the target. Find the appropriate limit on µ and V0/µ such that the Yukawa potential (6)
reduces to the Coulomb potential and show that the scattering amplitude (7) produces
the Rutherford formula in this limit.

(e) [4 points] Consider the Yukawa potential (6) and very low scattering momenta such
that |k| � µ. Under what condition (in terms of V0, µ and m) is the �rst-order Born
approximation valid?

(f) [4 points] Consider the Yukawa potential (6) and very high scattering momenta such
that |k| � µ. Under what condition (in terms of V0, µ, m and |k|) is the �rst-order
Born approximation valid?

Possibly useful:∫ 1

−1
dx
∫∞

0
eiar(1+x)−br = 1

a
log(1− 2ia

b
) for real and positive a and b

log(1 + x) ≈ x for x� 1

log(1 + x) ≈ log(x) for x� 1
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Problem II.4

Consider a system consisting of two particles, A and B, each of spin 1. The two particles may
form a bound state, which we treat as a composite particle C. The states of the particles are
represented in the basis |j,m〉A,B,C , where j and m are the quantum numbers of the angular
momentum and its projection on the z axis, and the index A, B, or C indicates the particle.
In this problem, assume conservation of angular momentum. Consider only the spin angular
momentum of the particles and ignore the orbital angular momentum and the spatial part
of the wave functions.

The particles A and B are bosons. Consider two cases: (i) the particles A and B are
distinguishable (i.e. di�erent), (ii) the particles A and B are indistinguishable (i.e. identical).

(a) [5 points] Given that jA = 1 and jB = 1, what are the possible values of the angular
momentum jC of the composite particle C? Answer the question in the two cases (i)
and (ii). In the latter case, discuss the symmetry of the composite wave function with
respect to interchange of the particles A and B to argue that one certain jC value is
forbidden.

Given that jA = 1 and jB = 1, the possible values of jC are 0, 1, and 2. This is the
answer in the case (i), where the particles are distinguishable.

In the case (ii), where the particles A and B are indistinguishable bosons, the wave-
function must be symmetric with respect to interchange of the particles A and B. The
permitted values of jC in this case are 0 and 2. They have symmetric wavefunctions,
whereas the wavefunction for jC = 1 is antisymmetric. A way to see that mathemati-
cally is to note that in the symmetric combination

(|1, 1〉|1,−1〉+ |1,−1〉|1, 1〉) , (1)

referring to the Clebsch-Gordan table, the |jC = 1,mC = 0 > amplitudes cancel to
zero.

(b) [5 points] Suppose the Hamiltonian of the system is

Ĥ = a (Ĵz,C)2,

where Ĵz,C = Ĵz,A + Ĵz,B is the z component of the angular momentum operator of the
composite particle C, and a is a coe�cient.

What are the eigenvalues of the Hamiltonian, and what are their degeneracies? Answer
the question in the two cases (i) and (ii).

The eigenvalues of the Hamiltonian are E = am2
C , where m

2
C takes the values 0, 1,

and 4, corresponding to mC = 0, mC = ±1, and mC = ±2. In the case (i), taking into
account the values of jC = 0, 1, 2, the degeneracies of these eigenvalues are 3, 4, and 2.
In the case (ii), we have jC = 0 and 2, so the degeneracies of these eigenvalues are 2,
2, and 2.
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(c) [6 points] Suppose initially one of the particles A and B is in the state |1, 1〉 and
another in the state |1,−1〉. Then, these particles combine to form the particle C.
What are the possible states |j,m〉C of the composite particle C in this case? What
are the probabilities of �nding the particle C in these states?

Answer the question in the two cases (i) and (ii). In the latter case, write down the
properly symmetrized wavefunction of the initial state of the particles A and B.

In the case (i), the possible states |j,m〉C are |2, 0〉, |1, 0〉, and |1, 0〉. They all have
mC = mA +mB = 0 and di�erent values of jC . From the Clebsch-Gordan coe�cients,
the probabilities of these states are 1/6, 1/2, and 1/3.

In the case (ii), the state with jC = 1 is not permitted, because it is antisymmetric.
So, the permitted states are |2, 0〉 and |1, 0〉 with the probabilities 1/3 and 2/3. The
wavefunction of the initial state must be symmetric for indistinguishable bosons:

1√
2

(|1, 1〉A|1,−1〉B + |1,−1〉A|1, 1〉B) =

√
1

3
|2, 0〉+

√
2

3
|0, 0〉.

(d) [5 points] Suppose the particle C is in the state |0, 0〉C . Suppose it is a metastable
state, and the particle C decays to particles A and B. Write down the wavefunction
of the two-particle system |ψ〉AB in the basis of the states |1,m1〉A|1,m2〉B. For each
case [(i) and (ii)], what are the permitted combinations of the numbers m1 and m2,
and what are the probabilities of �nding the particles A and B in these states?

|0, 0〉C =

√
1

3
|1, 1〉A|1,−1〉B −

√
1

3
|1, 0〉A|1,−0〉B +

√
1

3
|1,−1〉A|1, 1〉B

The permitted combinations of the numbers m1 and m2 are (1,−1), (0, 0), and (−1, 1).
Their probabilities are 1/3, 1/3, and 1/3. When the particles are indistinguishable,
the probability is 2/3 for �nding one particle with m = 1 and another with m = −1.

(e) [4 points] Considering the composite particle C from the previous part, suppose that
a measurement �nds the particle A in the state |1, 1〉A. Then, what are the possible
states |1,m〉B of the particle B? Justify your answer.

It is not possible to write the wavefunction |ψ〉AB as a product |ψ〉A|ψ〉B, so this is an
entangled state. The �nal eigenstate has mC = 0, so mA and mB must add up to that.
If a measurement �nds the particle A with m = 1, then m = −1 for the particle B
with probability 1. Once the state of the particle A has been measured, the state of
the particle B is completely certain.

Information about selected Clebsch-Gordan coe�cients is below:

11



|1, 1〉|1,−1〉 =

√
1

6
|2, 0〉+

√
1

2
|1, 0〉+

√
1

3
|0, 0〉 (2)

|1, 0〉|1, 0〉 =

√
2

3
|2, 0〉 −

√
1

3
|0, 0〉 (3)

|1,−1〉|1, 1〉 =

√
1

6
|2, 0〉 −

√
1

2
|1, 0〉+

√
1

3
|0, 0〉 (4)

|2, 0〉 =

√
1

6
|1, 1〉|1,−1〉+

√
2

3
|1, 0〉|1, 0〉+

√
1

6
|1,−1〉|1, 1〉 (5)

|1, 0〉 =

√
1

2
|1, 1〉|1,−1〉 −

√
1

2
|1,−1〉|1, 1〉 (6)

|0, 0〉 =

√
1

3
|1, 1〉|1,−1〉 −

√
1

3
|1, 0〉|1, 0〉+

√
1

3
|1,−1〉|1, 1〉 (7)
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Problem II.5

In this problem you will compare noninteracting boson gases in three dimensions (d = 3) and
in two dimensions (d = 2). Some interesting statistical properties are qualitatively di�erent
depending on the dimensionality.
For both cases (d = 3, 2), consider N noninteracting spinless bosons of mass m in a volume
V = Ld. Assume periodic boundary conditions so that the single-particle energy levels are
eigenstates of momentum ~k with energy ε(k) = ~2k2/2m. Also assume that the system size
is large so that it is safe to calculate in the continuous (not discrete) limit.

(a) [6 points] Find the density of states as a function of energy, νd(ε). (Hint: �rst calculate
the total number of states with energy ≤ ε, then determine the density of states from
that.)

Let Nd(ε) be the the number of states with energy ≤ ε in the dimensionality-d case.
The available states are uniform in k phase space, so

Nd(ε) =
∑
ε(k)≤ε

=
Ld

(2π)d

∫
k≤
√

2mε/~2

ddk

The volume integral is 4π
3
k3

max in 3 dimensions and πk2
max in 2 dimensions, so

N3(ε) =
L3

8π3

4π

3

(
2mε

~2

)3/2

=
L3
√

2m3

3π2~3
ε3/2 (1)

N2(ε) =
L2

4π2
π

(
2mε

~2

)
=
L2m

2π~2
ε (2)

The density of states is the derivative: νd(ε) = d
dε
Nd(ε). Explicitly,

ν3(ε) =
L3
√

2m3

2π2~3
ε1/2 (3)

ν2(ε) =
L2m

2π~2
(4)

(b) [2 points] Having found ν3(ε) and ν2(ε), what is the qualitative di�erence between
them as ε→ 0?

ν3(ε) ∝ ε1/2 so it goes to zero as ε→ 0, while ν2(ε) remains constant.

(c) [2 points] Now assume a grand canonical ensemble with a given average number
density of particles, 〈N〉/V . For an arbitrary d, write down an expression equating
the average number density, n ≡ 〈N〉/V , to an integral that involves νd(ε) and the
Bose-Einstein distribution function

nBE(ε) =
1

e(ε−µ)/kBT − 1
, (5)

13



where µ the chemical potential. (Do not try to evaluate the integral at this time.)

n =
1

Ld

∫ ∞
0

dε νd(ε) nBE(ε) =
1

Ld

∫ ∞
0

dε
νd(ε)

e(ε−µ)/kBT − 1

(d) [3 points] We assert (without asking you to prove it here) that µ must be < 0.
Assuming that the temperature is �xed, explain how you can tell from the integral
that n(µ) increases as µ→ 0−.

For µ < 0, the exponential term is always > 1, so the denominator of the integrand is
positive for all ε. Increasing µ (approaching zero but still < 0) makes the exponential
term smaller, so the denominator of the integrand is smaller, so the integral is larger.
In other words, n(µ) increases as µ→ 0.

(e) [6 points] For d = 3, show that at �xed temperature T , n(µ) increases to a �nite value
as µ→ 0−. Invert the relationship to obtain an expression for the critical temperature,
Tc, as a function of n.

In the limit µ→ 0−,

n(µ→ 0−) =

√
2m3

2π2~3

∫ ∞
0

dε
ε1/2

eε/kBT − 1

To do this integral, de�ne x2 = (ε/kBT ), implying that ε1/2 =
√
kBT x and dε =

2kBTx dx. Then the integral becomes

n(µ→ 0−) =

√
2m3

2π2~3
2(kBT )3/2

∫ ∞
0

dx
x2

ex2 − 1
(6)

=

√
2

π2~3
(mkBT )3/2

√
π

4
ζ(3/2) (7)

=

(
mkBT

2π~2

)3/2

ζ(3/2) (8)

which is �nite since ζ(3/2) ≈ 2.612.

Inverting this relationship,

Tc =
2π~2

mkB

(
nc

ζ(3/2)

)2/3

(9)

(f) [2 points] For a d = 3 Bose gas, what happens when n > nc for a given T , or T < Tc
for a given n? What is the experimental signature in the momentum distribution when
the critical value is exceeded?

Bose-Einstein condensation! There is a peak in the momentum distribution around
zero momentum, as the �excess� particles bunch up there.
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(g) [4 points] For d = 2, prove that the integral relation for n can increase without bound
as µ → 0−. That means that there is no critical temperature in the two-dimensional
Bose gas�an important qualitative di�erence from the three-dimensional case.

We have already established that n(µ) increases as µ increases toward zero. In the
limit µ→ 0−, for d = 2,

n(µ→ 0−) =
m

2π~2

∫ ∞
0

dε
1

eε/kBT − 1
.

We can show that the integral diverges. Let x = (ε/kBT ) so that the integral is∫ ∞
0

dx
1

ex − 1

times a constant. For the small-x part of the integration region, ex ≈ 1 + x, so the
integral can be approximated as

≈
∫ small

0

dx
1

x
+

∫ ∞
small

dx
1

ex − 1
.

The �rst part diverges since it involves a ln 0. In other words, n(µ) can become
arbitrarily large as µ→ 0−.

Possibly useful:

ζ(3/2) =
4√
π

∫ ∞
0

dx
x2

exp(x2)− 1
= 2.612...
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