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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

You may keep this packet with the questions after the exam. 



Problem I.1

In 1896, Zeeman first observed the effect of a magnetic field on spectral lines. Lorentz
proposed a simple (classical) model to interpret these observations. Though very far from
the quantum truth of the matter, this model was useful. In this problem you’ll redo some
calculations with this model.

(a) [6 points] Using either ~F = m~a or the Lagrangian method, find the equations of
motion for a particle of mass m and charge q in a three dimensional harmonic oscillator
potential of natural angular frequency !0, in the presence of a uniform magnetic field
~B = Bẑ, with B > 0. You may use either Cartesian coordinates (x, y, z) or cylindrical
coordinates (⇢,�, z) for the particle’s position.

(b) [7 points] Find exact expressions for all the positive normal mode frequencies describ-
ing the charge’s three-dimensional motion, and expand them to linear order in the
magnetic field.

(c) [2 points] Lorentz assumed that the frequency of a normal mode corresponded to the
frequency of light emitted by the atom. On that assumption, if �! is the observed
difference between the highest and lowest frequencies among the split components of a
spectral line in the presence of the magnetic field B, what charge to mass ratio |q|/m
could be inferred for the radiating particle in this model? (Assume the magnetic field
has a very weak effect on the frequencies, so you can use your result from part (b) to
linear order in B.)

(d) [6 points] Find the time dependence of the oscillator coordinates for each of the normal
mode solutions.

(e) [4 points] What does this model predict for the polarization of the highest frequency
component of a split spectral line, for light emitted in the direction of the magnetic
field? How could the sign of the radiating charge be inferred from observations of this
polarization?
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Problem I.2

A lightning discharge generates a broad spectrum of electromagnetic (EM) waves at frequen-

cies of a few Hz to tens of kHz. The emitted EM waves propagate to the far field guided

by the conducting earth (mostly seawater) and the ionosphere above the earth at a height

h ⇡ 100 km (see figure below).

We can model this scenario as a parallel-plate waveguide with infinitely large width in the

y direction, so that any fringe effects can be ignored and the wave fields can be taken to

be independent of y. We also assume that the plates are perfect conductors (� = 1 ) and

that the medium in between is vacuum. We use this model to explore the properties of

the EM wave propagation along the z-direction, detected by sensors in the far field many

wavelengths away from the discharge.

 

(a) [5 points] Consider TE modes (i.e. E = Eyŷ) propagating to the right, in the ẑ
direction. What are the components of B associated with this mode? Sketch the

lowest order mode, including E and B, and indicate the direction of the Poynting flux.

(b) [5 points]
Starting from the wave equation for Ey, derive the dispersion relation (kz versus angular

frequency !). Is there any cut-off frequency, fc, below which no TE modes propagate?

If so, find fc. (The letter f denotes frequency in Hz, i.e. cycles/s.)

(c) [5 points] Consider a TM mode (i.e. B = Byŷ), again propagating to the right. What

are the non-zero components of E associated with this mode? Starting from the wave

equation for By, find the dispersion relation. Is there any cut-off frequency fc below

which no TM modes propagate? If so, find fc.

(d) [5 points] A wave launched by a lightning strike is dispersive, so different frequency

components arrive at the sensors at different times. If the sensors are located at a

distance d from the lightning strike, when does a wavepacket component with frequency

f arrive at the sensors? Assume a dispersion relation of the general form c2k2
z = !2�!2

c .

(e) [5 points] In reality the conductivities of sea water and the ionosphere are finite.

Namely, �seawater ⇡ 4(⌦m)�1
and �ionosphere ⇡ 10�4(⌦m)�1

. Estimate how good our

perfect conductor assumption is for the frequency f = 100 Hz.

Possibly useful information:

c = 1/
p
✏0µ0 = 3⇥ 108 m/s

✏0 = 8.8⇥ 10�12
F/m

skin depth for a good conductor: � =
p
2/µ�!
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Problem I.3

The sketch below shows an airtight tube of cross-sectional area A, bent in a circular arc of
radius R and having a total angular spread of π/2 radians. The radial width of the tube
interior is much less than R. In the tube is a piston (marked P in the sketch) of mass M , as
well as negligible thickness, is acted on by gravity. The angular position of the piston is θ,
measured from the vertical dashed line. The dots represent ideal-gas monomers (e.g., neon
atoms); the number on the left side of the piston (NL) and on the right side (NR) are equal:
NL = NR = N0. The entire system is enclosed in a heat bath at temperature T . For high T ,

the high pressures on both sides of the
piston force it to the equilibrium posi-
tion θ = 0. The theme of this problem is
to explore what happens as T decreases.

(a) (i) [7 points] Find the net [total] force on the piston. For small displacements θ from
θ = 0, show that to leading order in θ the net force on the piston has the Hooke’s
Law form F = −kHRθ and determine kH . (The factor of R is pulled out explicitly so
that kH has the usual units of force per length.) Neglect the effects of gravity on the
gas [single-atom] molecules, any atom-boundary interactions, and friction between the
piston and the bent tube.

(ii) [2 points] Find the [angular] oscillation frequency ω of θ about θ = 0.

(b) (i) [3 points] For what temperature T0 do kH and ω vanish?

(ii) [2 points] For T <∼ T0, what happens, qualitatively?

(c) (i) [1 point] If we extend the expansion in part (a)(i) beyond linear order in θ, do
you expect all powers of θ or just odd powers, or just even powers, to be present? Very
briefly justify your choice.

(ii) [7 points] For T <∼ T0, determine the new equilibrium position[s] of θ by expanding
the force-balance equation to the next non-vanishing order of θ. Express your answer
as a function of T0−T or the dimensionless variable t ≡ 1− (T/T0), i.e. T = T0(1− t);
show clearly the lowest-order dependence of θ on t or T0 − T .

(iii) [1 point] For T <∼ T0, is θ = 0 still a solution? Is it stable?

(d) [2 points] The angle θ is in many ways analogous to a magnetization. Propose a mod-
ification of this piston-in-bent-tube system that would introduce an effect analogous
to that of an external magnetic field in a magnetic system.

1



Problem I.4

An electron and a positron collide head on, producing a resonance called ⌥(4s), which
breaks up into a B+ meson and a B� meson and no other particles. The ⌥(4s) rest energy
is M⌥(4s) = 10.579GeV/c2, and the rest mass of each B meson is mB = 5.279GeV/c2. The
B mesons subsequently decay into other particles, and by studying how the decay products
depend on the locations of the decay vertices, CP violation can be measured. To spread out
the decay locations, collisions with unequal electron and positron energies are studied.

(a) [10 points] If the electron has energy E� = 9 GeV in the lab frame, what should be
the positron energy E+, in order to produce the ⌥(4s) state at threshold, i.e. with no
energy to spare?

(b) [4 points] What is the speed of the B mesons in the rest frame of the ⌥(4s)?

(c) [1 points] The mean lifetime of the B mesons is ⌧ = 1.64ps (1 ps = 10�12 s). If the B+

decays after 3 ps and the B� decays after 1 ps, how far apart are their decay vertices
in the rest frame of the ⌥(4s)?

(d) [10 points] If the B+ in the previous part travels in the same direction as the original
electron, and the B� travels in the opposite direction in the rest frame of the ⌥(4s),
how far apart are the decay vertices in the lab frame? (The distance may seem small,
but vertex separations of 100 microns or even smaller can sometimes be resolved in the
experiment.)

Possibly useful information:
c = 3⇥ 108 m/s
1 ps = 10�12 s
It is recommended to adopt units with c = 1 in most calculations here.
The electron mass is 0.511MeV/c2, which is small enough to be neglected here.
You may use a nonrelativistic approximation in one part of this problem.
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Problem I.5

The motion of gas with planar symmetry satisfies the equations

@⇢

@t
+

@(⇢v)

@x
= 0, (1)

⇢

✓
@v

@t
+ v

@v

@x

◆
= �@p

@x
, (2)

p = ⇢kBT/m, (3)

where ⇢(x, t) is the mass density, v(x, t) is the gas velocity in the x direction, p(x, t) is the
pressure, T (x, t) is the temperature, kB is Boltzmann’s constant, m is the mass of a gas
molecule, and t is time.

(a) [9 points]
Assume that the connection between the pressure and density is well approximated by
the adiabatic relationship,

p⇢�� = constant, (4)

where � is the ratio of specific heats. [Eq. (4) is justified if heat flow due to thermal
conductivity of the gas can be neglected.] Consider small-amplitude perturbations of
a static, homogeneous background,

⇢ = ⇢0 + �⇢(x, t),

v = �v(x, t),

p = p0 + �p(x, t),

T = T0 + �T (x, t),

where ⇢0, p0 and T0 are background values that are independent of x and t, and �⇢,
�v, �p, �T are the perturbations, which are “small” in the sense that it is a good
approximation to expand the equations (1)-(3), keeping only terms that are linear in
these perturbations. Show that the perturbed density satisfies the wave equation,

@2�⇢

@t2
� c2s

@2�⇢

@x2
= 0, (5)

and give an expression for the sound speed cs.

(b) [1 point] Assuming that �⇢ ⌧ ⇢0, �p ⌧ p0 and �T ⌧ T0, what is the condition on �v
in order for it to be a good approximation to keep only terms that are linear in the
perturbations?

(c) [5 points] What is the most general solution of the wave equation (5) for �⇢(x, t)?

(d) [5 points] Assume that at t = 0, �v(x, 0) = 0, and �⇢(x, 0) is as shown in the figure
below. Draw a sketch of �⇢(x, t) at times t = t1 ⌘ L/2cs and t = t2 ⌘ 2L/cs. Be sure
to label all significant values on the horizontal and vertical axes in both sketches.
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(e) [5 points] Isaac Newton obtained the result
p
p0/⇢0 for the speed of sound, under

the assumption that the gas obeyed an isothermal relationship between pressure and
density (rather than the adiabatic one (4)). Newton’s result does not agree with mea-
sured values for typical gases at room temperature and pressure. Let  denote the
thermal diffusivity of the gas — i.e., the temperature satisfies the diffusion equation
@T/@t =  @2T/@x2 in the case v = 0. Using simple estimates, give an inequality (in-
volving the symbol ⌧) specifying how small  must be for a sound wave of wavelength
� to be accurately described by the adiabatic relation.
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