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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

 

You may keep this packet with the questions after the exam. 



Problem I.1

Consider a double pendulum made with masses m1 and m2 hanging from a fixed top support
by identical massless rods of length `, as shown. A uniform gravitational acceleration g acts
on this system.

(a) [4 points] Determine the Lagrangian of the system in terms of the angle coordinates θ
and φ. (Do not assume that the angles are small. You may use appropriate Cartesian
coordinates at first, but then convert to the angle coordinates.) Use mT ≡ (m1 +m2)
for convenience.

(b) [6 points] Now, making the approximation that both angles are small, use the La-
grangian to determine coupled equations of motion for the angle coordinates in rea-
sonably simple form.

(c) [3 points] Qualitatively describe the possible normal-mode (periodic) motions of the
system.

(d) [8 points] Determine the frequencies of the normal modes, still assuming small-angle
oscillations.

(e) [4 points] Qualitatively, interpreting your part (d) answer, what happens to the
normal-mode frequencies if you decrease m1 → 0 while keeping m2 fixed?
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Problem I.2

The figure shows a slab of dielectric material which extends to ±∞ in the x and z directions
but extends only from−d to +d in the y direction. In SI units, the slab has dielectric constant
ε > ε0 and is nonmagnetic. Air (ε ≈ ε0) surrounds the slab. We consider an electromagnetic
wave propagating in the z direction through the slab. The Maxwell Equations governing
this system are given in SI units as

∂tB = −∇× E, ∂tεE = ∇×B/µ0, where ε0µ0 = 1/c2. (1)

Assume, for this mode, that By = Bz = 0, and that the other field components (Bx and the
electric field vector E) do not vary with x. In this problem you are going to show that, with
certain constraints, the wave is guided in the z direction, in the sense that the fields decrease
rapidly with |y| outside the dielectric slab.

(a) [5 points] Starting from the Maxwell equations, write down, in Cartesian coordinates,
the equation for the time evolution of Bx. Assume constant ε. Noting that the Bx

equation couples to two particular components of E, write down the equations for the
time evolution of these coupled E components, and observe that the resulting system
of equations is closed. Combine these equations to obtain a partial differential equation
for Bx alone.

(b) [4 points] Assume that the wave propagates in the waveguide at a given frequency ω
and with a given wavenumber k in the z-direction. Let Bx → Bx(y)eikz−iωt and thus
deduce the ordinary differential equation that must be satisfied by Bx(y), separately
inside and outside the slab. Deduce also how each coupled component of E(y) is related
to Bx(y), for given ω and k.

(c) [4 points] From the general Maxwell equations in dielectric media given above, state
the boundary ("pillbox") conditions satisfied by E across the slab boundary y = d.
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Apply these for each of the coupled E variables involved in our wave and thus deduce
the boundary conditions on Bx and its derivative across the discontinuity.

(d) [4 points] Up to a constant, write down a solution for Bx(y) outside the slab. For a
guided wave, the solution must decay exponentially to zero as y becomes large. What
condition does this place on k and ω?

(e) [4 points] Assuming even solutions about y = 0, write down, up to a constant, a
solution for Bx(y) inside the slab. What condition does this place on k, ω, and ε?

(f) [4 points] Apply the boundary conditions at z = d obtained in (c) and, so, find a
dispersion relation of the form (ε/ε0)β = α tan (αd), where α and β are functions of ω
and k. Specify both these functions.
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Problem I.3

A small particle bound to a surface defect by a centrally attractive force may act as a two-
dimensional classical harmonic oscillator. Assume that this particle is in thermal equilibrium
with its environment, which has temperature T .
(Note that the parts of this problem are not all sequential; if you get stuck on one part, you
may still be able to do some of the later parts.)

(a) [3 points] Suppose the restoring force on the particle produces a natural (angular)
frequency ω for linear oscillations in either the x direction or the y direction. Write
down (you don’t need to derive it) the Hamiltonian of the particle as a function of its
mass m, instantaneous position (x, y), and momentum p.

(b) [6 points] Calculate the partition function for this system, doing integrals where ap-
propriate to reduce it to a simple form involving T . (Recall that the partition function
involves Planck’s constant even for classical systems, as a conventional unit of phase
space.)

(c) [5 points] Now consider an ensemble of N of these two-dimensional harmonic oscilla-
tors, taking them to be non-interacting and distinguishable. Find the Helmholtz free
energy and the entropy of the ensemble in terms of T , ω, and constants.

(d) [2 points] Now go back to focusing on just a single bound classical particle. While
it is in thermal equilibrium with its environment, its energy will not be constant over
time. Explain why in one or two sentences.

(e) [4 points] Use the partition function from part (b) to calculate the average energy
of this (single) bound-particle system expressed in terms of T . (Or, for partial credit,
determine its average energy in some other way.)

(f) [5 points] Calculate the root-mean-square fluctuation in the energy of this system,
expressed in terms of T .
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Problem I.4

The W± bosons were first discovered in the collisions of beams of protons and antiprotons.
The two beams circulate in opposite directions in a large ring and have the same energy,
Eb, which is much greater than the proton rest energy. The reaction is understood to be a
collision between a u quark from the proton and an anti-d quark from the antiproton. The
quarks can carry any fraction of the beam energy, have essentially zero mass, and essentially
zero momentum transverse to the beam axis.

(a) [5 points] Let x1 be the fraction of the proton’s momentum carried by the u quark,
and let x2 be the fraction of the antiproton’s momentum carried by the anti-d quark.
(Both x1 and x2 are between 0 and 1.) Determine the necessary relationship between
x1 and x2 such that they annihilate, producing a W particle (with mass MW) and
nothing else. This relationship should be in terms of MW and the beam energy.

(b) [5 points] Based on your answer to (a), what is the permissible range of values for
the W particle’s momentum component parallel to the proton beam axis? That is,
calculate pmax.

(c) [5 points] A variable commonly used to characterize a particle emerging from a beam-
beam collision is the “rapidity”,

η ≡ 1

2
ln

(
E + pL
E − pL

)
where pL is the component of the particle’s momentum parallel to the proton beam
axis and E is the energy of the particle. What is the maximum value of η possible for
a W particle produced in the collision described above (in the lab frame)?

(In this scenario, its momentum is much larger than its mass, butMW cannot be totally
neglected. Expand to lowest order and simplify to get a finite (approximate) value for
the maximum η in terms of MW and pmax.)

(d) [5 points] The collision will actually produce multiple particles, and the W will decay
almost instantly to other particles. Rapidity is a frame-dependent quantity (which is
why we specified the lab frame in the previous part). However, when two particles
emerge from the same collision, the rapidity difference ∆η ≡ η1− η2 is invariant under
Lorentz transformations along the beam axis. Prove that explicitly.

(e) [5 points] Many collider detectors installed at proton-antiproton collision points have
a solenoidal magnet centered on the interaction point and co-axial with the beam axis,
and either a silicon or wire-chamber tracking detector to record the paths of charged
particles emerging from the collision. Explain how the path of a charged particle in
this region is used to determine the pL and E quantities used to calculate its rapidity
(ignoring, in this case, any information that may be available from a calorimeter).
(Hint: consider the direction of the magnetic field produced by a solenoid.)
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Problem I.5

A uniform string of length L under tension τ undergoes small transverse oscillations. The
mass per unit length of the string is given by µ, and the equilibrium position of the string
lies along the x axis. The transverse displacement of the string at the point with coordinate
x at time t is denoted by y(x, t). One end of the string at x = 0 is attached to a fixed support
so that the transverse displacement at this point vanishes, y(0, t) = 0. The other end of the
string is attached to a point particle of mass m that is restricted to lie along the line x = L,
but is free to move without friction along the y direction.

(a) [4 points] Write down the wave equation of motion for small amplitude displacements
y(x, t). Express the velocity of propagation of transverse waves in terms of τ and µ.

(b) [5 points] By applying Newton’s 2nd Law to the mass m, show that the appropriate
boundary condition for small displacements along y at x = L has the form

κ
∂y

∂x
= −∂

2y

∂t2
. (1)

Express the constant κ in terms of the physical parameters in the problem.

(c) [10 points] Use the boundary condition above to obtain a transcendental equation
that implicitly determines the characteristic frequencies of the normal modes of this
system. (You may write the equation in terms of a wavenumber k instead of a frequency
parameter).

Note: If you can’t get the answer to this part, you can still answer parts (d) and (e)
through other lines of reasoning for partial credit.

(d) [3 points] Use this transcendental equation to obtain the solution for the wavelengths
of the normal modes in the limit that m→∞, (or, more precisely, m� µL). Give a
physical interpretation of your result.

(e) [3 points] Use the equation from part (c) to obtain the solution for the wavelengths
of the normal modes in the limit that m → 0. Give a physical interpretation of your
result.
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