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something from every student. 
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Problem II.1

Consider a quantum particle of mass m con�ned within a one-dimensional in�nite square-
well potential in the presence of an additional repulsive delta-potential in the middle of the
well:

U(x) =

{
β δ(x), if − a < x < a;
∞, if |x| > a,

(1)

where δ(x) is the Dirac δ-function and β ≥ 0. The potential U(x) is illustrated below.

(a) [2 points] Consider the parity (re�ection) operator P̂ , whose action on an arbitrary
function ψ(x) is de�ned as follows:

P̂ ψ(x) = ψ(−x) .

Explain (brie�y) why the eigenstates of the potential U(x), given by Eq. (1), should
also be eigenstates of the parity operator.

(b) [4 points] Consider the stationary Schrödinger equation with the energy E correspond-
ing to the potential (1). What boundary conditions must the wave function satisfy at
x = ±a? Also, prove that the wave function satis�es the following matching condition
at x = 0:

ψ′(0+)− ψ′(0−) =
2mβ

~2
ψ(0), (2)

where the left-hand side represents the di�erence of the derivatives ψ′ = dψ/dx taken
in the limit x→ 0 from the positive side (x > 0) and from the negative side (x < 0).

(c) [3 points] Show that the odd-parity (−) and even-parity (+) wave function forms
below both satisfy the Schrödinger equation everywhere that the potential is �nite,
and determine a relationship between the parameters k± and the energy E.

ψ−(x) = sin [k− x] (3)

ψ+(x) = sin [k+ (|x| − a)] (4)
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(d) [4 points] Apply the boundary conditions formulated above to the odd-parity wave
function ψ−(x) from Eq. (3) and determine the allowed values of k− and the corre-
sponding eigenenergies E−. How are the eigenenergies E− a�ected by the presence of
the δ-function potential in the middle of the well?

(e) [4 points] Prove that the even-parity wave function ψ+(x) from Eq. (4) is an eigenfunc-
tion of the Schrödinger equation if the wave vector k+ satis�es the following equation:

tan(k+a) = −k+a

ξ
, where ξ =

maβ

~2
. (5)

From Eqs. (1) and (5), determine the dimensionality of β and ξ.

(f) [4 points] Examine Eq. (5) in the limit ξ → 0, which corresponds to a vanishingly
weak δ-function potential. Determine the allowed values of k+ and the corresponding
even-parity energy levels E+ in this case. Compare your result with the well-known
spectrum of an in�nite potential well without δ-function potential (β = 0).

(g) [4 points] Now consider the limit of a very strong δ-function potential: ξ → ∞.
Determine the allowed values of k+ and the corresponding energy levels E+ from Eq. (5)
in this limit. How does this energy spectrum of even-parity eigenstates compare with
the energy spectrum of the odd-parity eigenstates found in part (d)?
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Problem II.2

A diatomic molecule with moment of inertia I is constrained to rotate freely in the xy plane
with angular momentum Lz. The molecule has a permanent electric dipole moment P along
the molecule axis, whose magnitude P0 is independent of the rotational motion or external
conditions. The Hamiltonian for the quantum system is

Ĥ =
(L̂z)

2

2I
. (1)
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(a) [6 points] The orientation of the dipole moment P relative to the x axis is speci�ed
by the angle φ as shown in the �gure. Write down the Hamiltonian (1) in the φ
representation and obtain the energy eigenvalues En and eigenfunctions ψn(φ). What
is the degeneracy of each eigenstate?

(b) [5 points] Now a weak uniform electric �eld E = E0 êx is applied to the system along
the x axis, adding a term −P ·E to the Hamiltonian. Write down the new Hamiltonian
for the system in terms of φ, then use perturbation theory to calculate the shifts of
the energy eigenvalues to �rst order in E0. Does the perturbation lift the degeneracy
to �rst order in E0?

(c) [6 points] Use perturbation theory to calculate the corresponding perturbed wave
functions to �rst order in E0.

(d) [5 points] Evaluate the expectation value 〈Px〉 of the x component of the dipole
moment operator P in each energy eigenstate; denote the expectation value for state
ψn by 〈Px〉n. From that, deduce the electric polarizability

αn = 〈Px〉n / E0 (2)

of each state.

(e) [3 points] Provide a physical explanation for the di�erence in the signs of α for the
lowest energy eigenstate versus the other states. (Hint: Classically, would the dipole
spend more time aligned or anti-aligned with the applied �eld?)
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Problem II.3

The di�erential cross-section dσ/dΩ for the elastic scattering of a particle of mass m from a
target characterized by a potential V (r) is

dσ

dΩ
= |f(k,k′)|2, (1)

where ~k and ~k′ are the incident and scattered momenta of the particle, with |k| = |k′|.
In the �rst-order Born approximation, the scattering amplitude f(k,k′) can be written as

f(k,k′) = − 1

4π

2m

~2

∫
d3r ei(k−k′)·r V (r) . (2)

The �rst-order Born approximation is valid if∣∣∣∣2m~2

1

4π

∫
d3r

eikr

r
V (r)eik·r

∣∣∣∣� 1 . (3)

(a) [2 points] Show that q ≡ |k − k′| can be written as

q = 2|k| sin (θ/2), (4)

where θ is the angle between k and k′ (the scattering angle).

(b) [5 points] For a spherically symmetric potential V (r), show that Eq. (2) reduces to

f(θ) = −2m

~2

1

q

∫ ∞
0

dr r V (r) sin (qr) (5)

expressed using the direct correspondence between q and θ.

(c) [5 points] Let V (r) be the Yukawa potential

V (r) =
V0

µ

e−µr

r
. (6)

Show that in this case, the scattering amplitude is

f(θ) =
2mV0

~2µ

1

q2 + µ2
. (7)

(d) [5 points] Recall the Coulomb potential

VC(r) =
ZZ ′e2

4πr
, (8)

and the Rutherford formula for Coulomb scattering

dσC
dΩ

=
4m2Z2Z

′2e4

~4

1

16 k4 sin4(θ/2)
, (9)

where Ze is the electric charge of the scattered particle and Z ′e is the electric charge of
the target. Find the appropriate limit on µ and V0/µ such that the Yukawa potential (6)
reduces to the Coulomb potential and show that the scattering amplitude (7) produces
the Rutherford formula in this limit.
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(e) [4 points] Consider the Yukawa potential (6) and very low scattering momenta such
that |k| � µ. Under what condition (in terms of V0, µ and m) is the �rst-order Born
approximation valid?

(f) [4 points] Consider the Yukawa potential (6) and very high scattering momenta such
that |k| � µ. Under what condition (in terms of V0, µ, m and |k|) is the �rst-order
Born approximation valid?

Possibly useful:∫ 1

−1
dx
∫∞

0
eiar(1+x)−br = 1

a
log(1− 2ia

b
) for real and positive a and b

log(1 + x) ≈ x for x� 1

log(1 + x) ≈ log(x) for x� 1
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Problem II.4

Consider a system consisting of two particles, A and B, each of spin 1. The two particles may
form a bound state, which we treat as a composite particle C. The states of the particles are
represented in the basis |j,m〉A,B,C , where j and m are the quantum numbers of the angular
momentum and its projection on the z axis, and the index A, B, or C indicates the particle.
In this problem, assume conservation of angular momentum. Consider only the spin angular
momentum of the particles and ignore the orbital angular momentum and the spatial part
of the wave functions.

The particles A and B are bosons. Consider two cases: (i) the particles A and B are
distinguishable (i.e. di�erent), (ii) the particles A and B are indistinguishable (i.e. identical).

(a) [5 points] Given that jA = 1 and jB = 1, what are the possible values of the angular
momentum jC of the composite particle C? Answer the question in the two cases (i)
and (ii). In the latter case, discuss the symmetry of the composite wave function with
respect to interchange of the particles A and B to argue that one certain jC value is
forbidden.

(b) [5 points] Suppose the Hamiltonian of the system is

Ĥ = a (Ĵz,C)2,

where Ĵz,C = Ĵz,A + Ĵz,B is the z component of the angular momentum operator of the
composite particle C, and a is a coe�cient.

What are the eigenvalues of the Hamiltonian, and what are their degeneracies? Answer
the question in the two cases (i) and (ii).

(c) [6 points] Suppose initially one of the particles A and B is in the state |1, 1〉 and
another in the state |1,−1〉. Then, these particles combine to form the particle C.
What are the possible states |j,m〉C of the composite particle C in this case? What
are the probabilities of �nding the particle C in these states?

Answer the question in the two cases (i) and (ii). In the latter case, write down the
properly symmetrized wavefunction of the initial state of the particles A and B.

(d) [5 points] Suppose the particle C is in the state |0, 0〉C . Suppose it is a metastable
state, and the particle C decays to particles A and B. Write down the wavefunction
of the two-particle system |ψ〉AB in the basis of the states |1,m1〉A|1,m2〉B. For each
case [(i) and (ii)], what are the permitted combinations of the numbers m1 and m2,
and what are the probabilities of �nding the particles A and B in these states?

(e) [4 points] Considering the composite particle C from the previous part, suppose that
a measurement �nds the particle A in the state |1, 1〉A. Then, what are the possible
states |1,m〉B of the particle B? Justify your answer.

Information about selected Clebsch-Gordan coe�cients is below:
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|1, 1〉|1,−1〉 =

√
1

6
|2, 0〉+

√
1

2
|1, 0〉+

√
1

3
|0, 0〉 (1)

|1, 0〉|1, 0〉 =

√
2

3
|2, 0〉 −

√
1

3
|0, 0〉 (2)

|1,−1〉|1, 1〉 =

√
1

6
|2, 0〉 −

√
1

2
|1, 0〉+

√
1

3
|0, 0〉 (3)

|2, 0〉 =

√
1

6
|1, 1〉|1,−1〉+

√
2

3
|1, 0〉|1, 0〉+

√
1

6
|1,−1〉|1, 1〉 (4)

|1, 0〉 =

√
1

2
|1, 1〉|1,−1〉 −

√
1

2
|1,−1〉|1, 1〉 (5)

|0, 0〉 =

√
1

3
|1, 1〉|1,−1〉 −

√
1

3
|1, 0〉|1, 0〉+

√
1

3
|1,−1〉|1, 1〉 (6)
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Problem II.5

In this problem you will compare noninteracting boson gases in three dimensions (d = 3) and
in two dimensions (d = 2). Some interesting statistical properties are qualitatively di�erent
depending on the dimensionality.
For both cases (d = 3, 2), consider N noninteracting spinless bosons of mass m in a volume
V = Ld. Assume periodic boundary conditions so that the single-particle energy levels are
eigenstates of momentum ~k with energy ε(k) = ~2k2/2m. Also assume that the system size
is large so that it is safe to calculate in the continuous (not discrete) limit.

(a) [6 points] Find the density of states as a function of energy, νd(ε). (Hint: �rst calculate
the total number of states with energy ≤ ε, then determine the density of states from
that.)

(b) [2 points] Having found ν3(ε) and ν2(ε), what is the qualitative di�erence between
them as ε→ 0?

(c) [2 points] Now assume a grand canonical ensemble with a given average number
density of particles, 〈N〉/V . For an arbitrary d, write down an expression equating
the average number density, n ≡ 〈N〉/V , to an integral that involves νd(ε) and the
Bose-Einstein distribution function

nBE(ε) =
1

e(ε−µ)/kBT − 1
, (1)

where µ the chemical potential. (Do not try to evaluate the integral at this time.)

(d) [3 points] We assert (without asking you to prove it here) that µ must be < 0.
Assuming that the temperature is �xed, explain how you can tell from the integral
that n(µ) increases as µ→ 0−.

(e) [6 points] For d = 3, show that at �xed temperature T , n(µ) increases to a �nite value
as µ→ 0−. Invert the relationship to obtain an expression for the critical temperature,
Tc, as a function of n.

(f) [2 points] For a d = 3 Bose gas, what happens when n > nc for a given T , or T < Tc
for a given n? What is the experimental signature in the momentum distribution when
the critical value is exceeded?

(g) [4 points] For d = 2, prove that the integral relation for n can increase without bound
as µ → 0−. That means that there is no critical temperature in the two-dimensional
Bose gas�an important qualitative di�erence from the three-dimensional case.

Possibly useful:

ζ(3/2) =
4√
π

∫ ∞
0

dx
x2

exp(x2)− 1
= 2.612...
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