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Do any four problems. Each problem is worth 25 points. 
Start each problem on a new sheet of paper (because different 
faculty members will be grading each problem in parallel). 

 
Be sure to write your Qualifier ID (“control number”) at the top of 
each sheet — not your name! — and turn in solutions to four 
problems only.  (If five solutions are turned in, we will only grade 
# 1 - # 4.) 
 
At the end of the exam, when you are turning in your papers, 
please fill in a “no answer” placeholder form for the problem that 
you skipped, so that the grader for that problem will have 
something from every student. 

 
You may keep this packet with the questions after the exam. 

 



Problem II.1

The Schrödinger equation for the helium atom cannot be solved exactly. However, if we
replace each of the Coulomb forces by a spring force, the system can be solved exactly. As
an example, consider the Hamiltonian H in 3-dimensional space given by
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with 0 < � < 1. Here r1 and r2 represent the coordinates associated with the two electrons
and m is the electron mass.

(a) [5 points] Neglecting the last term (i.e. setting � = 0) in H, determine the ground
state energy of the two (no longer coupled) 3D harmonic oscillators. Also write down
the ground state wave function.

(b) [5 points] Use this uncoupled ground state wave function and first order perturbation
theory to estimate the ground state energy of the full, coupled Hamiltonian H.

(c) [10 points] By a suitable change of variables, show how the full Hamiltonian H can
be transformed into the sum of two independent simple harmonic oscillators in 3D,
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Explicitly give the u = u(r1, r2) and v = v(r1, r2) that satisfy this transformation.

(d) [5 points] Determine the exact ground state energy of the system. How well does the
answer agree with your estimate from part (b) above?

Note: The normalized ground state wave function of a single harmonic oscillator in one
dimension is given by
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where ↵ = m!/~.



Problem II.2

An electron of mass m moves in a one-dimensional attractive potential U(x) = ���(x),
where �(x) is the Dirac delta function and � > 0.

(a) [5 points] Find the wave function and the energy E0 of the bound state. What is the
parity of the wave function with respect to the operation x ! �x?

(b) [5 points] Find the wave functions and the energies of the unbound states which are
antisymmetric with respect to the parity operation x ! �x. Because they are not
square-integrable, normalize them such that total | |2 in one wavelength is unity.

For time t < 0, the electron is in the ground state of the potential. At time t = 0, a small
AC electric field E(t) = E0 sin(!t) with frequency ! > |E0|/~ is turned on. The Hamiltonian
of the perturbation is

V = �2exE0 sin(!t)

where e is the electron charge. The perturbation may cause a transition from the bound
state to one of the unbound states.

(c) [5 points] Calculate the nonvanishing matrix elements of the perturbation between
the ground state and the unbound states.

(d) [5 points] Using the Fermi golden rule, calculate the transition rate. Make sure the
dimensionality of your final result is 1/time.

(e) [5 points] Sketch how the ionization rate depends on the frequency !.

Potentially useful:
R1
0 dx x sin(ax)e�bx = 2ab
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Problem II.3

A spin-1/2 particle of mass m moves in the x direction in a potential given by:

V (x) = V0�z for x � 0 and V (x) = 0 for x < 0. (1)

Here �
z

is one of the Pauli matrices
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acting on the spinor wavefunction of the particle, where the quantization axis is along z.

(a) [2 points] Describe qualitatively how the potential (1) can be realized experimentally.

(b) [3 points] Consider a beam of particles coming from x = �1 with energy E > V0 > 0

and velocity in the positive x direction. Suppose the particles are in an eigenstate of
�

x

with eigenvalue +1. Write down the general wavefunction  (x, t) of the incoming
beam as a two-component spinor, where the quantization axis is along z.

(c) [3 points] Write down general expressions for the spinor wavefunctions of the trans-
mitted and reflected beams with yet unknown amplitudes to be determined later.

(d) [4 points] Using the boundary conditions at x = 0, obtain equations connecting the
spinor amplitudes of the incoming, reflected, and transmitted beams.

(e) [3 points] Solve the equations obtained above and express the spinor amplitudes of
the transmitted and reflected beams in terms of the incoming beam amplitude.

(f) [4 points] Using the above result, calculate the transmission and reflection coefficients
T and R. They are defined as the transmitted and reflected probability fluxes divided
by the incoming probability flux. Keep in mind that the probability flux depends on
velocity, which is different for x < 0 and x > 0. Check that T +R = 1.

(g) [3 points] Determine spin polarization, i.e., the direction of spin, of the reflected beam.
It is characterized by the polar angle ✓

r

relative to the axis z and the azimuthal angle
'

r

in the (x, y) plane. Is the reflected beam still polarized along the axis x?

(h) [3 points] Determine spin polarization of the transmitted beam as a function of x,
characterized by the polar angle ✓

t

(x) and azimuthal angle '
t

(x). Describe spatial
variation pattern of spin polarization and determine the spatial period L.



Problem II.4

The wave-function for a spin-1/2 particle is written as a two-component spinor
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The time-reversal operator for this system is written as ⇥ = i�
y

K where K is the complex
conjugation operator. Consider the single-particle Hamiltonian
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where x is the position operator, p is the momentum operator, and a, b, c, d � 0 are constants.

(a) [8 points] By considering the action of the operators p, �
x

, �
z

and e�x

2 on a wave-
function  (x) detemine whether each of these operators are even or odd (i.e. symmetric
or anti-symmetric) under time-reversal.

(b) [2 points] Use the symmetries of the operators in the last part to show that H is
symmetric (even) under time-reversal.

(c) [5 points] By considering the action of ⇥ on the wave-function  (x) show that ⇥2 =
�1.

(d) [5 points] (Kramer’s theorem) Consider an energy eigenstate  
n

(x) with energy eigen-
value E
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for the Hamiltonian of this problem. Show that  0
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(e) [5 points] When a = 0, the eigenvalue spectrum has no bound states. For |x| � 1 (so
that the potential term e�x

2
/2 can be neglected), its scattering states are essentially

those of a free particle
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It is paired by Kramers’ theorem with  0
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i to show that the back-scattering rate vanishes according to Fermi’s
Golden rule.



Problem II.5

A particle of charge e and mass m moves in an external magnetic field along the z-direction

with magnitude B, in a volume V = L

3
with L � mc

eB

.

(a) [5 points] Using the gauge A = (A
x

, 0, 0), show that the time-independent Schrödinger

equation can be written as
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and the unitless coordinates x

0 = x/`, y

0 = y/`, and z

0 = z/`. Give the

“magnetic length” ` in terms of !
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and other quantities in the problem.

(b) [5 points] Use the ansatz  (r) ⇠ e
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�(y0) to write an equation for �(y0).

What is the energy eigenvalue spectrum?

(c) [5 points] Use the finite size of the volume to determine the degeneracy of each state

with unique eigenenergy.

(d) [5 points] Use these levels to evaluate the single-particle partition function Z at high

temperature T in the limit where ~!
c

⌧ k

B

T (k

B

is the Boltzmann constant). Retain

the lowest-order term dependent on magnetic field.

(e) [5 points] Use the partition function to calculate the magnetic susceptibility � at

high temperature. Show that it is diamagnetic for small fields and obeys Curie’s law,
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