
Problem I.1

Consider a double pendulum made with masses m1 and m2 hanging from a fixed top support
by identical massless rods of length `, as shown. A uniform gravitational acceleration g acts
on this system.

(a) [4 points] Determine the Lagrangian of the system in terms of the angle coordinates θ
and φ. (Do not assume that the angles are small. You may use appropriate Cartesian
coordinates at first, but then convert to the angle coordinates.) Use mT ≡ (m1 +m2)
for convenience.

L = T − V . Using the support point as the origin and measuring x to the right and
y downward, the kinetic term for mass 1 can be written as T1 = 1

2
m1(ẋ

2
1 + ẏ21) with

x1 = ` sin θ and y1 = `(1− cos θ). Taking derivatives and substituting, T1 = 1
2
m1`

2θ̇2.

The kinetic term for mass 2 is a bit more complicated since x2 = `(sin θ + sinφ) and
y2 = `(2− cos θ − cosφ). We get
T2 = 1

2
m2`

2
[
(θ̇ cos θ + φ̇ cosφ)2 + (θ̇ sin θ + φ̇ sinφ)2

]
= 1

2
m2`

2
[
θ̇2 + φ̇2 + 2θ̇φ̇ cos (θ − φ)

]
,

making use of the trig identity cos θ cosφ+ sin θ sinφ = cos (θ − φ).

The potential energy term is
V = −m1gy1 −m2gy2 = g` [m1 + 2m2 − (m1 +m2) cos θ −m2 cosφ], but because the
constant terms have no effect on the dynamics, we can write this more simply as
V = −g` [mT cos θ +m2 cosφ].

Putting those things together,
L = 1

2
mT `

2θ̇2 + 1
2
m2`

2φ̇2 +m2`
2θ̇φ̇ cos (θ − φ) + g` [mT cos θ +m2 cosφ].

(b) [6 points] Now, making the approximation that both angles are small, use the La-
grangian to determine coupled equations of motion for the angle coordinates in rea-
sonably simple form.

Keeping terms to second order in the angle coordinates and their derivatives,
L ≈ 1

2
mT `

2θ̇2 + 1
2
m2`

2φ̇2 +m2`
2θ̇φ̇− g

2
` [mT θ

2 +m2φ
2].
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Evaluating the Lagrange equations:
d

dt

∂L
∂θ̇

=
∂L
∂θ

→ mT `
2θ̈ +m2`

2φ̈ = −mTg`θ (1)

d

dt

∂L
∂φ̇

=
∂L
∂φ

→ m2`
2φ̈+m2`

2θ̈ = −m2g`φ (2)

or, simplifying,

mT θ̈ +m2φ̈ = −mT
g

`
θ (3)

m2θ̈ +m2φ̈ = −m2
g

`
φ (4)

(c) [3 points] Qualitatively describe the possible normal-mode (periodic) motions of the
system.
One mode will have both masses swinging the same direction at a given time, while the
other will have them going opposite directions. These could be called “symmetric” and
“antisymmetric”, although those terms are not really accurate for a double pendulum
like they are for a pair of spring-coupled side-by-side pendula.

(d) [8 points] Determine the frequencies of the normal modes, still assuming small-angle
oscillations.
We require a periodic solution of the form θ(t) = A sinωt, φ(t) = B sinωt. Given the
nature of the modes, we can choose the phase so that A and B are both real numbers,
though they may have opposite signs. Our pair of equations becomes

ω2mTA+ ω2m2B = mT
g

`
A (5)

ω2m2A+ ω2m2B = m2
g

`
B (6)

or, dividing out m2 from the second equation and writing in in matrix form,[
ω2mT −mTg/` ω2m2

ω2 ω2 − g/`

] [
A
B

]
=

[
0
0

]
(7)

We find the values of ω which satisfy this by requiring the determinant to equal zero:

(ω2mT −mTg/`)(ω
2 − g/`)−m2ω

4 = 0 (8)

→ (ω2 − g/`)2 =
m2

mT

ω4 (9)

→ ω2 − g/` = ±
√
m2/mT ω

2 (10)

→ ω2 =
g/`

1±
√
m2/mT

(11)

→ ω =

√
g/`

1±
√
m2/mT

(12)

One could also express this using ω0 ≡
√
g/`.
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(e) [4 points] Qualitatively, interpreting your part (d) answer, what happens to the
normal-mode frequencies if you decrease m1 → 0 while keeping m2 fixed?

Decreasing m1 makes mT → m2, so
√
m2/mT → 1. Thus, one of the normal-mode

frequencies approaches a constant value, ω =
√
g/2` (effectively, a single mass on the

end of a rod with length 2`), while the other normal-mode frequency increases toward
infinity.
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Problem I.2

The figure shows a slab of dielectric material which extends to ±∞ in the x and z directions
but extends only from−d to +d in the y direction. In SI units, the slab has dielectric constant
ε > ε0 and is nonmagnetic. Air (ε ≈ ε0) surrounds the slab. We consider an electromagnetic
wave propagating in the z direction through the slab. The Maxwell Equations governing
this system are given in SI units as

∂tB = −∇× E, ∂tεE = ∇×B/µ0, where ε0µ0 = 1/c2. (1)
Assume, for this mode, that By = Bz = 0, and that the other field components (Bx and the
electric field vector E) do not vary with x. In this problem you are going to show that, with
certain constraints, the wave is guided in the z direction, in the sense that the fields decrease
rapidly with |y| outside the dielectric slab.

(a) [5 points] Starting from the Maxwell equations, write down, in Cartesian coordinates,
the equation for the time evolution of Bx. Assume constant ε. Noting that the Bx

equation couples to two particular components of E, write down the equations for the
time evolution of these coupled E components, and observe that the resulting system
of equations is closed. Combine these equations to obtain a partial differential equation
for Bx alone.
To get at the time evolution of Bx, use the x̂ component of Faraday’s law: ∂tBx =
−∂yEz + ∂zEy.
The electric field components Ey and Ez must be related back to Bx by Ampere’s
law. Since ∂x = 0, we find ∂tεEy = ∂zBx/µ0, and ∂tεEz = −∂yBx/µ0. The system of
equations for Bx, Ey, and Ez is closed.
Taking the time derivative of the Faraday-law equation, multiplying by ε and substi-
tuting in the other expressions, we get

εµ0∂
2
tBx = ∂2yBx + ∂2zBx . (2)
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(b) [4 points] Assume that the wave propagates in the waveguide at a given frequency ω
and with a given wavenumber k in the z-direction. Let Bx → Bx(y)eikz−iωt and thus
deduce the ordinary differential equation that must be satisfied by Bx(y), separately
inside and outside the slab. Deduce also how each coupled component of E(y) is related
to Bx(y), for given ω and k.

Insert Bx → Bx(y)eikz−iωt into the differential equation from part (a). That implies
−εµ0ω

2Bx = ∂2yBx − k2Bx, which we can rewrite as ∂2

∂y2
Bx = (k2 − εµ0ω

2)Bx.

Further, since the electric field components must also have e−iωt time dependence, the
Ampere’s law relationships become −ωεµ0Ey = kBx and −iωεµ0Ez = −∂Bx

∂y
.

(c) [4 points] From the general Maxwell equations in dielectric media given above, state
the boundary ("pillbox") conditions satisfied by E across the slab boundary y = d.
Apply these for each of the coupled E variables involved in our wave and thus deduce
the boundary conditions on Bx and its derivative across the discontinuity.

From Faraday’s Law, [Etangential] = 0. From Coulomb, [εEnormal] = 0. Thus, [εEy] = 0,
and [Ez] = 0. Using results from (b), these yield [Bx] = 0 and [(1/ε)(d/dy)Bx] = 0.

(d) [4 points] Up to a constant, write down a solution for Bx(y) outside the slab. For a
guided wave, the solution must decay exponentially to zero as y becomes large. What
condition does this place on k and ω?

Outside, ε = ε0. So, Bx = Be−β(y−d), where β = (k2 − ε0µ0ω
2)1/2 and must have

k2 > ε0µ0ω
2. Since ε0µ0 = 1/c2, those can also be written as β = (k2 − ω2/c2)1/2 and

as k2 > ω2/c2 or |k| > ω/c.

(e) [4 points] Assuming even solutions about y = 0, write down, up to a constant, a
solution for Bx(y) inside the slab. What condition does this place on k, ω, and ε?

Inside, ε > ε0. To get an even solution, we must have a wave equation with solution
Bx(y) = A cos (αy), where α = (εµ0ω

2 − k2)1/2 and must have k2 < εµ0ω
2.

(f) [4 points] Apply the boundary conditions at z = d obtained in (c) and, so, find a
dispersion relation of the form (ε/ε0)β = α tan (αd), where α and β are functions of ω
and k. Specify both these functions.

We now apply the boundary conditions on Bx and its derivative, as resulted from part
(c). These give B = A cos (αd), and (ε/ε0)βB = Aα sin (αd). Eliminate A and B to
get the required dispersion relation. Here, α ≡

√
εµ0ω2 − k2 and β ≡

√
k2 − ε0µ0ω2 =√

k2 − ω2/c2.
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Problem I.3

A small particle bound to a surface defect by a centrally attractive force may act as a two-
dimensional classical harmonic oscillator. Assume that this particle is in thermal equilibrium
with its environment, which has temperature T .
(Note that the parts of this problem are not all sequential; if you get stuck on one part, you
may still be able to do some of the later parts.)

(a) [3 points] Suppose the restoring force on the particle produces a natural (angular)
frequency ω for linear oscillations in either the x direction or the y direction. Write
down (you don’t need to derive it) the Hamiltonian of the particle as a function of its
mass m, instantaneous position (x, y), and momentum p.

The kinetic term is p2/2m, while the potential terms are 1
2
mω2x2 in the x direction

and similar in the y direction. Thus the Hamiltonian is H = p2

2m
+ 1

2
mω2(x2 + y2).

(Here, p is the magnitude of the momentum vector p, which has components px and
py.)

(b) [6 points] Calculate the partition function for this system, doing integrals where ap-
propriate to reduce it to a simple form involving T . (Recall that the partition function
involves Planck’s constant even for classical systems, as a conventional unit of phase
space.)

The quadratic form of this 2D oscillator is equivalent to two independent 1D oscillators,
so to calculate the partition function, we can either integrate over the four parameters
(x, px, y, py), or just calculate the partition function for a 1D oscillator and square it.
Taking the latter approach and using β ≡ 1

kBT
,

Z1D =
1

h

∫ ∞
−∞

dx

∫ ∞
−∞

dpx e
−βE (1)

=
1

h

∫ ∞
−∞

dxe
β
2
mω2x2

∫ ∞
−∞

dpx e
− β

2m
p2x (2)

=
1

h

√
π

β
2
mω2

√
π

β/2m
(3)

=
2π

hβω
(4)

=
kBT

~ω
(5)

Then the partition function of the 2D particle system is

Z = (Z1D)2 =

(
kBT

~ω

)2

. (6)

If you don’t recall why the partition function of a classical system involves Planck’s con-
stant, see https://physics.stackexchange.com/questions/184947/why-is-the-partition-
function-divided-by-h3n-n , for instance.
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(c) [5 points] Now consider an ensemble of N of these two-dimensional harmonic oscilla-
tors, taking them to be non-interacting and distinguishable. Find the Helmholtz free
energy and the entropy of the ensemble in terms of T , ω, and constants.

The partition function for N such particles is

Z =

(
kBT

~ω

)2N

. (7)

The Helmholtz free energy is

F = −kBT lnZ = −NkBT ln (kBT/~ω) (8)

and the entropy is

S =
−∂F
∂T

= NkB ln (kBT/~ω) +NkBT

(
~ω
kBT

)(
kB
~ω

)
(9)

= NkB ln (kBT/~ω) +NkB (10)
= NkB [ln (kBT/~ω) + 1] (11)

(d) [2 points] Now go back to focusing on just a single bound classical particle. While
it is in thermal equilibrium with its environment, its energy will not be constant over
time. Explain why in one or two sentences.

There will be random exchange of energy with its environment, so the energy of the
particle will fluctuate. Only its average energy is directly determined by the tempera-
ture.

(e) [4 points] Use the partition function from part (b) to calculate the average energy
of this (single) bound-particle system expressed in terms of T . (Or, for partial credit,
determine its average energy in some other way.)

The ensemble average is given by

E =

∫ ∫
Ee−βE∫ ∫
e−βE

=
−∂Z/∂β

Z
(12)

=

−∂
∂β

1
(~ω)2β2

1
(~ω)2β2

(13)

= 2 β−1 = 2kBT . (14)

Note that this can also be written as

E =
−∂ lnZ

∂β
(15)

=
−∂
∂β

ln

((
1

~ωβ

)2
)

=
−∂
∂β

[−2 ln ~ω − 2 ln β] (16)

= 2/β = 2kBT . (17)
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Either way, that agrees with what we expect from counting degrees of freedom: 1
2
kBT

for each of four degrees of freedom. If they don’t use the partition function but just
argue based on degrees of freedom and get the right answer that way, give 2 points.

Alternatively, instead of using either of the handy partition-function derivatives above,
it should be possible to calculate the integral

∫ ∫
Ee−βE directly using standard definite

integrals and get the answer for E using that. Give full credit if they slog through that
and get the right answer.

(f) [5 points] Calculate the root-mean-square fluctuation in the energy of this system,
expressed in terms of T .

We need to find (∆E)2 = E2 − E2 and then take the square root of that.

E2 =

∫ ∫
E2e−βE∫ ∫
e−βE

=

∂2Z
∂β2

Z
(18)

=

∂2

∂β2
1

(~ω)2β2

1
(~ω)2β2

(19)

= 6 β−2 = 6(kBT )2 . (20)

So

∆Erms =
√

6(kBT )2 − (2kBT )2 =
√

2 kBT . (21)

Possibly useful: ∫ ∞
−∞

e−ax
2

dx =

√
π

a
(22)∫ ∞

0

xe−ax
2

dx =
1

2a
(23)∫ ∞

−∞
x2e−ax

2

dx =
1

2a

√
π

a
(24)∫ ∞

0

x3e−ax
2

dx =
1

2a2
(25)∫ ∞

−∞
x4e−ax

2

dx =
3

4a2

√
π

a
(26)
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Problem I.4

The W± bosons were first discovered in the collisions of beams of protons and antiprotons.
The two beams circulate in opposite directions in a large ring and have the same energy,
Eb, which is much greater than the proton rest energy. The reaction is understood to be a
collision between a u quark from the proton and an anti-d quark from the antiproton. The
quarks can carry any fraction of the beam energy, have essentially zero mass, and essentially
zero momentum transverse to the beam axis.

(a) [5 points] Let x1 be the fraction of the proton’s momentum carried by the u quark,
and let x2 be the fraction of the antiproton’s momentum carried by the anti-d quark.
(Both x1 and x2 are between 0 and 1.) Determine the necessary relationship between
x1 and x2 such that they annihilate, producing a W particle (with mass MW) and
nothing else. This relationship should be in terms of MW and the beam energy.

4-momentum vectors simplify to 2-component vectors, (pz, E), if the transverse mo-
menta are negligible. Setting c = 1 and taking the quarks to be massless, the 2-
momenta of the u and anti-d quarks in the lab frame are (x1Eb, x1Eb) and (−x2Eb, x2Eb).
Those must add to give the 2-mometum of the W particle, (pW, EW), such that the
invariant mass is the W mass:

M2
W = E2

W − p2W = (x1 + x2)
2E2

b − (x1 − x2)2E2
b = 4x1x2E

2
b . (1)

Thus, we require

x1x2 =
M2

W

4E2
b

=

(
MW

2Eb

)2

(2)

(b) [5 points] Based on your answer to (a), what is the permissible range of values for
the W particle’s momentum component parallel to the proton beam axis? That is,
calculate pmax.

Its momentum component is (x1 − x2)Eb. This is maximized by making x1 large and
x2 small, but of course x1 can’t be greater than 1. From the condition we found in

part (a), that requires x2 =
(
MW

2Eb

)2
. So then the W’s momentum component is

pmax =

(
1− M2

W

4E2
b

)
Eb (3)

= Eb −
M2

W

4Eb

(4)

or, putting factors of c back in,

pmax =
Eb

c
− M2

Wc
3

4Eb

. (5)

The allowed range (symmetric around zero) is from −pmax to pmax, but that symmetry
is pretty obvious, so it’s OK to just give pmax.
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(c) [5 points] A variable commonly used to characterize a particle emerging from a beam-
beam collision is the “rapidity”,

η ≡ 1

2
ln

(
E + pL
E − pL

)
where pL is the component of the particle’s momentum parallel to the proton beam
axis and E is the energy of the particle. What is the maximum value of η possible for
a W particle produced in the collision described above (in the lab frame)?

(In this scenario, its momentum is much larger than its mass, butMW cannot be totally
neglected. Expand to lowest order and simplify to get a finite (approximate) value for
the maximum η in terms of MW and pmax.)

The W produced in this reaction has longitudinal momentum but no transverse mo-
mentum in the lab frame.

E =
√
p2L +M2

W = pL

(
1 +

M2
W

p2L

)1/2

(6)

≈ pL

(
1 +

M2
W

2p2L

)
. (7)

Inserting that into the rapidity definition, dividing through by pL and dropping the
term beyond lowest order in the numerator,

ηmax =
1

2
ln

(
2

M2
W/2p

2
L

)
(8)

=
1

2
ln

(
4p2max

M2
W

)
(9)

= ln

(
2pmax

MW

)
(10)

(d) [5 points] The collision will actually produce multiple particles, and the W will decay
almost instantly to other particles. Rapidity is a frame-dependent quantity (which is
why we specified the lab frame in the previous part). However, when two particles
emerge from the same collision, the rapidity difference ∆η ≡ η1− η2 is invariant under
Lorentz transformations along the beam axis. Prove that explicitly.

Dropping the L subscripts, the rapidity difference is

∆η =
1

2
ln

(
E1 + p1
E1 − p1

)
− 1

2
ln

(
E2 + p2
E2 − p2

)
(11)

=
1

2
ln

(
(E1 + p1)(E2 − p2)
(E1 − p1)(E2 + p2)

)
. (12)
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The Lorentz transformation (boost) in the z direction takes p → γ(p − βE) and
E → γ(E − βp). Applying those, in the new frame

∆η =
1

2
ln

(
γ((E1 − βp1) + (p1 − βE1)) γ((E2 − βp2)− (p2 − βE2))

γ((E1 − βp1)− (p1 − βE1)) γ((E2 − βp2) + (p2 − βE2))

)
(13)

=
1

2
ln

(
(E1 + p1)(1− β) (E2 − p2)(1 + β)

(E1 − p1)(1 + β) (E2 + p2)(1− β)

)
(14)

=
1

2
ln

(
(E1 + p1) (E2 − p2)
(E1 − p1) (E2 + p2)

)
(15)

which is the same as in the other frame.

(e) [5 points] Many collider detectors installed at proton-antiproton collision points have
a solenoidal magnet centered on the interaction point and co-axial with the beam axis,
and either a silicon or wire-chamber tracking detector to record the paths of charged
particles emerging from the collision. Explain how the path of a charged particle in
this region is used to determine the pL and E quantities used to calculate its rapidity
(ignoring, in this case, any information that may be available from a calorimeter).
(Hint: consider the direction of the magnetic field produced by a solenoid.)

The magnetic field produced by the solenoid points along the beam axis, so a particle’s
velocity component parallel to the beam axis does not produce any Lorentz force; only
the transverse velocity component produces a Lorentz force that curves the particle’s
path. Thus, the curvature of the path directly measures the transverse momentum, and
that together with the angle of the path in 3D determines the longitudinal momentum
component, pL. The total momentum vector magnitude, combined with the mass of
the particle (if not negligible), can be used to calculate E. In general, you need to
either know or assume the type of particle (electron, muon, pion, or whatever) so that
you can use the correct mass to calculate E from p.
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Problem I.5

A uniform string of length L under tension τ undergoes small transverse oscillations. The
mass per unit length of the string is given by µ, and the equilibrium position of the string
lies along the x axis. The transverse displacement of the string at the point with coordinate
x at time t is denoted by y(x, t). One end of the string at x = 0 is attached to a fixed support
so that the transverse displacement at this point vanishes, y(0, t) = 0. The other end of the
string is attached to a point particle of mass m that is restricted to lie along the line x = L,
but is free to move without friction along the y direction.

(a) [4 points] Write down the wave equation of motion for small amplitude displacements
y(x, t). Express the velocity of propagation of transverse waves in terms of τ and µ.

The wave equation in one dimension takes the form

∂2y

∂x2
=

1

v2
∂2y

∂t2
(1)

For a vibrating string the wave velocity v is given by v =
√
τ/µ.

(b) [5 points] By applying Newton’s 2nd Law to the mass m, show that the appropriate
boundary condition for small displacements along y at x = L has the form

κ
∂y

∂x
= −∂

2y

∂t2
. (2)

Express the constant κ in terms of the physical parameters in the problem.

Since the mass can only move along the y direction, we apply Newton’s Law along this
direction. The component of the tension τ pulling on the mass along the y direction
is given by (−τsinθ). Then at x = L we have

m
d2y

dt2
= −τsinθ (3)

But for small dispacements of the string,

sinθ ≈ tanθ =
dy

dx
(4)

Then at y = L we have the boundary condition

m
d2y

dt2
= −τ dy

dx
(5)

Equivalently,

−d
2y

dt2
= κ

dy

dx
(6)

with κ = τ/m.
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(c) [10 points] Use the boundary condition above to obtain a transcendental equation
that implicitly determines the characteristic frequencies of the normal modes of this
system. (You may write the equation in terms of a wavenumber k instead of a frequency
parameter).

We look for solutions of the form

y(x, t) = X(x)T (t) (7)

Then
1

X

d2X

dx2
=

1

v2
1

T

d2T

dt2
(8)

Since the left hand side is a function of x alone and the right hand side a function of t
alone, both sides must equal a constant which we denote by −k2. Then,

d2T

dt2
+ k2v2T = 0 (9)

This has solution T (t) = C1sin (kvt+ φ), where C1 is a constant and φ is a constant
phase. Also,

d2X

dx2
+ k2X = 0 (10)

with solution
X(x) = D1 sin(kx) +D2 cos(kx) (11)

From the boundary condition X = 0 at x = 0 we have D2 = 0, so X(x) = D1sinkx.
Then

y(x, t) = C sin(kx) sin (kvt+ φ) (12)

Imposing the boundary condition at x = L we obtain

k2v2sin(kL) = kκ cos(kL) (13)

Recalling that κ = τ/m = v2(µ/m), we obtain the condition

tan(kL) =
µ

mk
. (14)

This transcendental equation implicitly determines the frequencies of the normal modes.

Note: If you can’t get the answer to this part, you can still answer parts (d) and (e)
through other lines of reasoning for partial credit.

(d) [3 points] Use this transcendental equation to obtain the solution for the wavelengths
of the normal modes in the limit that m→∞, (or, more precisely, m� µL). Give a
physical interpretation of your result.

We write the transcendental equation as

kL tan(kL) =
µL

m
(15)
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In the limit m � µL, the solutions of this equation are approximately given by the
roots of tan(kL) = 0. Then

kn =
nπ

L
n ≥ 1 (16)

Since kn = 2π/λn, we obtain the wavelengths of the normal modes as λn = 2L/n.

The physical explanation is that in the limit that m → ∞, the inertia of the mass is
very large and it cannot be displaced from its equilibrium position. This corresponds
to having a stiff boundary at y = L so that y(L) = 0. The standing waves for a string
of length L fixed at both ends have wavelengths λn = 2L/n, which is exactly the result
we find.

(e) [3 points] Use the equation from part (c) to obtain the solution for the wavelengths
of the normal modes in the limit that m → 0. Give a physical interpretation of your
result.

In the limit m = 0, the normal modes satisfy tan(kL) =∞. Then

kn = (2n− 1)
π

2L
n ≥ 1 (17)

The corresponding wavelength is given by

λn =
4L

2n− 1
n ≥ 1 (18)

The physical explanation is that in the limit m = 0, the end at x = L is free and
corresponds to an anti-node.
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