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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

 

You may keep this packet with the questions after the exam. 



Problem I.1

A solar system is immersed in a uniform spherical cloud of Weakly-Interacting Massive
Particles (WIMPs) of mass density ρ and radius RW . The sun is at rest at the center of the
cloud. A planet of mass m is located at a radius r from the sun. Assume that the planet and
the Sun can be considered as point particles of mass m and M� respectively, with M� � m.

(a) [3 points] Show that the force on the planet can be written as

~F = −m
(
k

r2
+ br

)
r̂,

where r̂ is a unit vector in the radial direction. Express the constants k and b in terms
of M�, ρ and G (Newton’s gravitational constant).

(b) [3 points] Find a potential energy V (r) associated with the conservative force ~F , valid
within the WIMP cloud (i.e., for r < RW ). You may use k and b here and in later
parts.

(c) [2 points] Because of the spherical symmetry, the planet must orbit in a plane. Write
the Lagrangian L of the planet, using the distance r and azimuth angle θ as generalized
coordinates.

(d) [4 points] From the Lagrangian, derive the canonical momenta conjugate to r and θ
and obtain the Hamiltonian of the planet.

(e) [3 points] Using the symbol ` to represent the canonical momentum conjugate to θ,
reduce the Hamiltonian to that for a particle moving in an effective one-dimensional
potential energy Veff(r), and find Veff(r).

(f) [3 points] It is observed that the planet moves in a circular orbit with radius r = r0.
Find an algebraic expression that relates the radius r0, the force constants k, b, and
the conserved quantity ` (do not solve for r0).
Find the angular frequency θ̇ in terms of k, b and r0.
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(g) [4 points] Now consider a planet on a nearly circular orbit r ≈ r0. Its radial motion
is an oscillation about the circular orbit. Find the angular frequency ω of this small-
amplitude oscillation.

(h) [3 points] Based on the findings from above, describe how observations of a planet’s
orbit can be used to test the hypothesis that there is a cloud of WIMPs around the
sun.
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Problem I.2

L
R

Switch

A flywheel with thin spokes, as shown in the figure, has radius a and moment-of-inertia I.
Each radial spoke of the wheel is an electrical conductor with resistance RS along its length,
while the central hub and the circular rim are good conductors with negligible resistance.
There is a uniform magnetic field B directed into the page, normal to the plane of the
wheel. The wheel is set into rotation on frictionless bearings at angular velocity ω0 and then
allowed to coast.

Leads are placed in frictionless contact with the center and the rim of the wheel, and a
circuit with a switch is set up as shown, initially open. There is a load resistance RL in the
external part of the circuit.

Address each of the questions below with your answers given in terms of ω0 or ω, a, I,
B, RS and RL.

(a) [7 points] Considering mechanical equilibrium of a charged particle on a rotating
spoke, determine the electric potential difference across the open switch.

(b) [5 points] The switch is now closed, allowing current i to flow. At an arbitrary rotation
rate ω, calculate the current i flowing through the switch and the total power dissipated
in all parts of the circuit, P .

(c) [2 points] If the wheel is rotating counter-clockwise, which direction does the current
flow: outward (from hub to rim) or inward (from rim to hub)?

(d) [4 points] With the switch closed and the wheel rotating at ω, calculate the torque
on the wheel arising from the current flowing radially through the spokes.

(e) [3 points] With the switch closed, what is the angular acceleration rate of the wheel
at instantaneous rotation rate ω(t)?

(f) [4 points] Find ω(t) for t > 0 if the switch is closed at t = 0.
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Problem I.3

Consider a binary alloy where each site of a lattice is occupied by an atom of type A or
B. (A realistic alloy might mix roughly half copper and half zinc to make β−brass.) Let
the numbers of the two kinds of atoms be NA and NB, with NA + NB = N (i.e., the total
number of sites is fixed at N). Define the concentrations nA ≡ NA/N and nB ≡ NB/N , and
the difference x ≡ nA − nB. The interaction energies between the neighboring atoms of the
types AA, BB, and AB are εAA, εBB, and εAB, correspondingly. Let c denote the number of
nearest neighbors for each atom.

(a) [1 point] For a cubic lattice in three dimensions, what is c?
(But use the symbol c in calculations in the rest of this problem, not this number.)

(b) [4 points] Consider the system at a high enough temperature such that the atoms
are randomly distributed among the sites. Calculate the average interaction energy U
per site under these conditions, first expressing U in terms of nA and nB, and then
substitute to obtain U(x).

(c) [4 points] From now on, for simplicity, assume that εAA = εBB = ε0 and εAB > ε0.
Obtain U(x) in this this case and sketch a plot of it for −1 ≤ x ≤ 1. Indicate values
of U(x) at its extrema.

(d) [6 points] Under the same conditions (where the atoms are randomly distributed
among the sites), calculate the configurational entropy S per site. Assume that
NA, NB � 1, so the Stirling approximation ln(N !) ≈ N lnN − N can be used. First
express S in terms of nA and nB, and then obtain S(x).

Sketch a plot of the function S(x), and indicate the values of S(x) at its extrema.

(e) [5 points] Using the results from the previous parts, obtain the free energy per site
F (x, T ) = U(x)− TS(x), where T is the temperature

Show that, at a high temperature, F (x) has one global minimum as a function of x.
Show that, at a low temperature, F (x) has one local maximum surrounded by two
minima, excluding the boundaries at x = ±1.

(f) [5 points] A binary alloy may be stable in a mixed state, in which the atoms are
randomly distributed among the sites with the same x throughout, or it may be more
favorable to spontaneously separate into two phases (an unmixed state) with different
values of x, if such a segregation decreases the free energy F . For our two-component
system, if x = 0, which state is favored at high temperature, and which is favored at
low temperature?

Calculate the temperature T∗ at which the transition from mixed to unmixed occurs.
(Hint: The system remains stable in the mixed state as long as d2F/dx2 > 0 for all x.)
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Problem I.4

Ultra-high-energy cosmic ray protons can lose energy by inelastic collisions with cosmic
microwave background (CMB) photons, producing pions: In this problem, we will only look
at the reaction p+ γ → p+ π0.

(a) [8 points] First, consider this reaction in the reference frame in which the proton is
initially at rest. What is the minimum (“threshold”) energy, Et that the photon must
have to produce a π0 by this reaction? (Express your answer in terms of mp and mπ,
the masses of the proton and the pion, respectively.)
Hint: at threshold there is no kinetic energy in the final-state center-of-mass frame.

(b) [3 points] Qualitatively, how does that threshold photon energy compare to the pion
and/or proton rest energy?

(c) [3 points] What is the approximate energy of a typical CMB photon? (Hint: use what
you know about the temperature of the CMB, perhaps.)
For comparison, a neutral pion has a mass of > 100MeV/c2.

(d) [8 points] Now, consider the same reaction as in part (a) but viewed in the reference
frame of the interstellar medium, in which the proton collides with a CMB photon that
has energy ECMB. For simplicity, assume that the collision is head-on. At the reaction
threshold, what is the energy Ep of the incoming proton in this frame? (Calculate the
boost by relating the photon energy ECMB to Et; you may make an approximation
since βp ≈ 1. Express your answer in terms of the particle masses mp, mπ, and ECMB.)

(e) [3 points] If protons with energies higher than the Ep from part (d) are detected at
the Earth, what can you infer about their origin?
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Problem I.5

In this problem, we study propagation of plane waves in a homogeneous, nonpermeable
(µ = 1), but anisotropic dielectric medium, which is characterized by a symmetric dielectric
tensor εij such that Di =

∑
j=x,y,z εijEj.

(a) [8 points] Starting from Maxwell’s equations (given below), show that a plane wave
solution

E(r, t) = Ẽ(k, ω) e−iωt+ik·r (1)

with the frequency ω and wave vector k must satisfy the following equation in the
Gaussian system

(k · Ẽ)k − k2Ẽ +
ω2

c2
ε · Ẽ = 0, (2)

where c is the speed of light, and (ε · Ẽ)i ≡
∑

j εijẼj.

(b) [9 points] Suppose x, y, and z are the directions that diagonalize the tensor

εij =

 εxx 0 0
0 εyy 0
0 0 εzz

 . (3)

Consider a linearly polarized plane wave (1) of the frequency ω traveling in this medium
along the direction ẑ, so that k‖ẑ. From Eq. (2), find the two possible wave numbers
k1,2 for this wave and describe their respective polarizations Ẽ1,2, as well as the corre-
sponding wave lengths λ1,2.

(c) [8 points] Suppose a plane wave of the frequency ω propagates along the direction ẑ
and is polarized along the direction Ẽ‖(x̂+ ŷ) at z = 0. At what distance L does the
polarization Ẽ of the wave turn 90◦ to become Ẽ‖(x̂− ŷ)?

Additional information. For any vector V ,

∇× (∇× V ) = ∇(∇ · V )−∇2V .

Maxwell’s equations in the absence of free charges and currents are

∇ ·D = 0,

∇ ·B = 0,

∇×E = −1

c

∂B

∂t
,

∇×H =
1

c

∂D

∂t
.
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