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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

You may keep this packet with the questions after the exam. 



Problem II.1

Consider a one-dimensional potential of the form:

V (x) = U0a

∞∑
n=−∞

δ(x− na) (1)

(a) [5 points] The electron wave function ψI(x) in the region 0 < x < a may be written
as

ψI(x) = Aeikx +Be−ikx with k =

√
2mE

~2
(2)

Use the Bloch relation for a periodic potential: ψ(x) = u(x)eiKx and u(x + a) = u(x)
to write the wavefunction ψII(x) in the region a < x < 2a in terms of A,B, a, k, andK

(b) [8 points] What boundary conditions on the first derivatives dψI(x)/dx and dψII(x)/dx
must be satisfied at x = a ? Justify this from the time-independent Schrödinger equa-
tion.

(c) [8 points] Using the boundary conditions at x = a find the equations that A and B
must satisfy.

(d) [4 points] The equations from part (c) have the solution

P
sin ka

ka
+ cos(ka) = cos(Ka) (3)

where P = U0ma
2/~2 , K is the Bloch wave vector and must be real.

What are the allowed energies E for U0 → ∞ ? What is the physical significance of
these solutions ?
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Problem II.2

Consider a hydrogen atom in a uniform weak electric field ~E along the +z axis, which exerts
the electric force Fz = eE = −|e|E on the electron. (To avoid confusion in notation, use
the letter E for the magnitude of the perturbing electric field, En for unperturbed energy
eigenvalues, and let e be defined to be a negative charge.)

(a) [5 points] Write down the Hamiltonian of the electron as H = H0 + HI , where H0

is independent of F , and HI depends on F . Ignore the spins of the electron and the
proton, and assume that the proton has a fixed position at the origin.

(b) [5 points] The energy eigenvalues and eigenstates of H0 are denoted as En and |nlm〉.
Describe degeneracies of the energy levels En, the values and the physical meaning of
the quantum numbers n, l, and m, and their relation to the symmetries of H0.

(c) [5 points] Now describe the symmetry of the full Hamiltonian H including the electric
field. What are the good quantum numbers characterizing energy eigenstates? What
are the symmetry-related degeneracies of the energy eigenstates?

(d) [5 points] Treating HI as a weak perturbation to H0, write a general formula for
energy correction ∆E1 to the ground state n = 1 to the lowest non-vanishing order in
E. Is this correction positive or negative? Is it proportional to E or E2?

(e) [5 points] Obtain lower and upper bounds on the magnitude of ∆E1, such that
|∆E1min| < |∆E1| < |∆E1max|.
Show that keeping only the n = 2 contributions gives a lower bound on the energy
shift. Identify non-zero matrix elements among those with n = 2, but do not attempt
to calculate them.

Show that replacing each En with E2 gives an upper bound on the energy shift. Find a
way to use the completeness relation and the fact that 〈100|r2|100〉 = 〈100|(x2 + y2 +
z2)|100〉 = 3a2 (where a is the Bohr radius) to evaluate the resulting sum.
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Problem II.3

A beam of electrons of massm and energy E = ~2k2/2m scatters off a molecule consisting
of two identical atoms, separated by the distance a. The molecule has a fixed position in
space with a fixed vector a connecting the two atoms.

Suppose one atom produces a spherically-symmetrical potential U0(r), where r is the
distance from the center of the atom. Then, the potential produced by the two atoms in the
molecule is

U(r) = U0(r) + U0(|r − a|). (1)

This problem asks you to express scattering properties of the two-atom system in terms
of the scattering properties of the single-atom potential using the Born approximation. You
may ignore complicating factors such as molecular recoil, vibration, rotation, and excitation,
and the electron spin.

The Born approximation formula for the scattering amplitude f0(q) on the single-atom
potential U0(r) is

f0(q) = − m

2π~2

∫
e−iq·r U0(r)d

3r.

where q = k′ − k is the change of the electron wavevector from k to k′ upon scattering,
q = |k′ − k| = 2k sin(θ/2) and θ is the scattering angle.

(a) [5 points] Obtain a formula for the scattering amplitude f(q) on the two-atom po-
tential (1) in the Born approximation in terms of f0(q) and a.

(b) [5 points] Express the differential cross-section of scattering on the molecule, dσ/dΩ,
in terms of the corresponding cross-section dσ0/dΩ for a single atom in the Born
approximation.

(c) [5 points] Assume that electrons have low energy, so that ka � 1, but the Born
approximation is still applicable. Express dσ/dΩ in terms of dσ0/dΩ in this limit.
Also, how will the total cross sections compare in this limit?

(d) [5 points] Now consider the high-energy limit where ka� 1. Express dσ/dΩ in terms
of dσ0/dΩ in this limit. Also, how will the total cross sections compare in this limit?
(If necessary you may assume that the range of the potential U0(r) is much shorter
than the interatomic distance.)

(e) [5 points] The orientation of the molecular axis is determined by the unit vector
n = a/a. So far, we assumed that the vector n has a fixed orientation. Now assume
that the molecular axis orientations are random, and different orientations appear
with equal probability. Average the differential cross-section of scattering over random
orientations of n and obtain the averaged cross-section dσ/dΩ. Does it matter in the
high energy limit whether the orientation of the molecule is fixed or random?
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Problem II.4

Selection rules govern which transitions are allowed and which are disallowed. In this
problem you will determine the selection rules for several reactions based upon angular
momentum and parity conservation, and the spin-statistics theorem.

In what follows f is a spin-1/2 fermion with intrinsic parity +1, f̄ is the corresponding
spin-1/2 anti-fermion with intrinsic parity -1, and φ is a spin zero scalar particle with parity
+1.

(a) [10 points]

Consider the decay φ → ff̄ . Assuming the interaction conserves parity and angular
momentum, what values of the orbital angular momentum quantum number ` are
allowed for the final state?

(b) [5 points] Next consider the annihilation of a fermions into a pair of identical scalars

ff̄ → φφ (1)

What are the allowed values of ` in the final state?

(c) [8 points] If parity and angular momentum are conserved in the interaction in Eq. 1,
what values of ` are allowed for the initial state?

(d) [2 points] Among the allowed values of ` for the initial state and final state, which do
we expect would give the largest reaction rate?
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Problem II.5

The Debye model of lattice vibrations in an isotropic three-dimensional N -atom crystal
postulates an excitation spectrum of the form ε(k) = ~|k|v = ~ω for ω ≤ ωD, where ωD is
the Debye frequency and v is the speed of sound. In the Debye model, one assumes that the
density of states ρ(ω) behaves like a power law in ω up to the so-called Debye frequency ωD,
above which ρ(ω) vanishes. At this frequency the integrated density of states includes the
correct number of normal or vibrational (simple harmonic oscillator) modes. However, some
materials, such as graphite, exhibit a layered crystalline structure for which the restoring
forces parallel to each layer are much larger than those perpendicular to the layers. For
such an anisotropic system, it is tempting to consider an artificial, oversimplified model by
separating the lattice vibrations into two-dimensional modes in which atoms vibrate within
each layer, characterized by Debye frequency ωD2, and one-dimensional modes in which
atoms vibrate perpendicular to the layers, characterized by Debye frequency ωD1, where
ωD2 > ωD1. [Note: ωDn

n means (ωDn)
n throughout.] Likewise, we expect the in-plane sound

velocity v2 � v1, the sound velocity perpendicular to the layers.

(a) [6 points] The density of states for n-dimensional vibrations (with isotropic dispersion)
has the form

ρn(ω) =

{
bnN(ωn−1/ωn

Dn) , ω ≤ ωDn

0 , ω > ωDn

(i) Starting with the density of states in reciprocal (k-) space, show that this equation
is correct for n = 2. For simplicity we assume (i.e. pretend) throughout that there is
only one polarization per normal mode (per k), as for sound. Find the value of the
dimensionless constant b2.
(ii) By integrating ρ1(ω), show that b1 = b2/2.

(b) [6 points] Show that the total heat capacity for an n-dimensional Debye crystal has
the form

Cn(T ) = N kB bn xn
−n fn(xn), for n = 1, 2

i.e., explicitly, C1(T ) = N kB b1 x1
−1 f1(x1) and C2(T ) = N kB b2 x2

−2 f2(x2)

where x ≡ ~ω/(kBT ) and xn ≡ ~ωDn/(kBT ) are dimensionless reduced inverse temper-
atures with respect to arbitrary ω and the Debye frequency ωDn, respectively; fn(xn) is
a dimensionless definite integral in the expression for Cn(T ), with xn as one of its lim-
its. You cannot to evaluate analytically the integral, but should determine the explicit
form of fn(xn).

(c) [5 points] Obtain explicit expressions for the [leading-order] temperature dependence
of the heat capacity Cn in the limits:

(i) kBT � ~ωDn

(ii) kBT � ~ωDn

being careful to show your intermediate steps. (Reminders: for non-negative integer
m,

∫∞
0

e−xxm dx = m! ; for |x| � 1, e−x = 1− x+ x2/2 + . . ..)
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(d) [8 points] (i) [2] Sketch on the same graph (i.e., co-plot) the temperature dependencies
of the heat capacities C2(T ) and C1(T ) for the same N and using ωD1/ωD2 ≈ 0.05.

(ii) [2] Based on this graph and the preceding analysis, describe qualitatively the fea-
tures of the total heat capacity C1(T )+C2(T ) for low temperature, high temperature,
and in the crossover region.

(iii) [2] Experiments on materials like graphite do not display this behavior at low
temperature. Which of our approximations is the worst in our crude model in terms
of analyzing qualitatively the thermal dependence of C(T ) at low T?

(A) v1 < v2.

(B) Neglecting transverse vibration modes.

(C) Describing low-energy modes perpendicular to the layers as 1D phonons.

(D) Describing low-energy modes within the layers as 2D phonons.

(iv) [2] How, very briefly, does one measure the heat capacity experimentally? (What
steps are necessary? Not what equipment is used.)

2


	Qual-II-0120-CoverSheet
	Qual-II-0120
	II-1
	II-2
	II-3
	II-4
	II-5




