Search for Low-Mass SM Higgs at ATLAS

Bertrand Brelier

March 17, 2012

Introduction

- The Higgs boson is the last missing particle predicted by the SM.
- The LEP experiments have excluded a SM Higgs boson with $m_H < 114.5 \text{ GeV at } 95\% \text{ C.L.}$
- The Tevatron experiments have excluded the boson with $100 < m_H < 108$ GeV and $156 < m_H < 177$ GeV at 95% C.L.

• With 5 fb⁻¹ of recorded data, the LHC experiments are looking for the Higgs boson and have reduced the mass range where it can still hide.

Higgs production

Cross-section of the Higgs boson production processes as a function of its mass.

Higgs decay

Branching ratio of the Higgs decay as a function of its mass.

$H \rightarrow \tau \tau$

- ullet This channel is sensitive to $m_H \sim 110\text{-}140 \; ext{GeV}$
- ullet Lepton and hadronic decay of the au leptons are considered :

•
$$H \rightarrow \tau^+ \tau^- \rightarrow \ell \ell 4 \nu$$

•
$$H \rightarrow \tau^+ \tau^- \rightarrow \ell \tau_{had} 3\nu$$

•
$$H \rightarrow \tau^+ \tau^- \rightarrow \tau_{had} \tau_{had} 2\nu$$

- ullet The main background is Z o au au. Other background contributions :
 - Z+jets
 - Top production
 - Diboson
 - Fake leptons production (especially in the $\tau_{had}\tau_{had}$ channels).
- The events are split according to their jet-multiplicity (different analysis cuts)

$H \rightarrow \tau \tau$

$Z/W H \rightarrow bb$

- Channel benefits from large branching ratio
- Very large QCD background : associated production with lepton requirement to reduce the background
- WH 2 times larger XS than ZH, but WH has more background
- Event selection :
 - ZH $\rightarrow \ell\ell$: exactly 2 leptons, Z mass cut, remove high Etmiss, two leading jets b-tagged
 - ZH $\rightarrow \nu\nu$: large Etmiss, p_T^{miss} requirement, lepton veto, 2 jets b-tagged
 - WH : exactly 1 lepton, $M_T > 25$ GeV, Etmiss cut, exactly 2 jets b-tagged
- Backgrounds:
 - ZH $\rightarrow \ell\ell bb$: Z+jets is the main backgrounds, then comes top and dibosons
 - ZH $\rightarrow \nu \nu bb$: Z+jets and top, but W+jets and dibosons are a bit smaller
 - WH $\rightarrow \ell \nu b \bar{b}$: top, W+jets, multijet (QCD) are the main backgrounds, then come dibosons

Z/W $H \rightarrow b\bar{b}$: limits per channel and combination

$H ightarrow \gamma \gamma$ analysis

- ullet $\gamma\gamma$ channel sensitive to $m_H \in [110-150]$ GeV
- benefits from good calorimeter resolution : 1.6 GeV for 120 GeV Signal
- ullet 2 photons are required with $E_T^{\gamma_1} >$ 40 GeV, $E_T^{\gamma_2} >$ 25 GeV
- Main background : irreducible $\gamma\gamma$ (30 pb), reducible $\gamma-jet$ (200 nb) and jet-jet (500 μ b)
- Powerful γ jet separation used based on calorimeter shower-shape and isolation cuts

 Background composition from control samples by reversing isolation or identification criteria:

Fraction of irreducible $\gamma\gamma$: $(71\pm5)\%$

$H o \gamma \gamma$ analysis

- 9 analysis categories (with different mass resolutions and signal-to-background ratio) to improve sensitivity depending on :
 - Conversion status
 - η (pseudo-rapidity) of the photons
 - The diphoton transverse momentum orthogonal to the diphoton thrust axis in the transverse plane p_{Tt} .

- Background estimation from fit to $m_{\gamma\gamma}$ spectrum :
 - Simultaneous fit to all 9 categories.
 - Exponential function, free slope and normalization.

$H o \gamma \gamma$ analysis

Invariant mass distribution for the 9-categories combined together.

$H \rightarrow \gamma \gamma$ results

Observed exclusion in ranges [113,115] and [134.5,136] GeV

The best-fit signal strength $\mu = \sigma/\sigma_{SM}$ as a function of m_H .

Largest excess of events observed at 126.5 GeV : Local significance: 2.8σ (1.5 σ after the look-elsewhere-effect).

$H \rightarrow ZZ^* \rightarrow \ell\ell\ell\ell$

- Low branching ratio in the low mass region
- Sensitivity in low and high Higgs mass
- Benefits from good mass resolution (130 GeV: 1.5-2%)
- Backgrounds :
 - ZZ* from simulation
 - Z + jets: control region without charge, isolation and impact parameter criteria on the second lepton pair.
 - $t\bar{t}: e^{\pm}\mu^{\mp}$ pair consistent with m_Z and two additional same-flavor leptons.

$H \to ZZ^* \to \ell\ell\ell\ell$: background estimation

Invariant mass of the 2 muons (2 electrons) in a control sample with $Z \to \ell\ell + 2$ muons (2 electrons).

$H \to ZZ^* \to \ell\ell\ell\ell$: Results

Observed exclusion at low mass : $m_H \in [134,156]$ GeV

$H \to ZZ^* \to \ell\ell\ell\ell$: Results

Excess of events observed at 125 GeV : local significance of 2.1σ

$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$

- This channel is sensitive to $m_H \sim 120\text{-}180 \text{ GeV}$
- No mass reconstruction due to the neutrinos : use $m_T = \sqrt{(E_T^{\ell\ell} + E_T^{miss})^2 - |ec{p}_T^{\ell\ell} + ec{p}_T^{miss}|^2}$ with E_T^{miss} the missing transverse momemtum.
- Selection :
 - 2 isolated oppositely charged lepton ($p_T > 25$, 15 GeV) Reduce W+jets and QCD background
 - Large missing energy and Z veto in case of same-flavor lepton pair Reduce Z background
 - $E_T^{miss\ rel} = E_T^{miss} * sin(\Delta\phi(\vec{p}_T^{\ell}, \vec{E}_T^{miss}))$, with closest lepton in ϕ Reduce fake missing energy
 - b-jet veto Reduce top background
 - $m_{\ell\ell}$ and $\Delta\phi_{\ell\ell}$ cuts Reduce SM WW background, $H \rightarrow WW$ produces polarized W bosons
 - Jet multiplicity dependent cut : $p_T^{\ell\ell}$, \vec{p}_T^{tot} Reduce Drell-Yan and soft QCD backgrounds

$H \to WW^* \to \ell\nu\ell\nu$: Background estimation

- WW : control sample with no $\Delta\phi_{\ell\ell}$ cut and reverse $m_{\ell\ell}$ cut.
- top: control sample by requesting b-tagged jet(s)
- Z+jets : control sample by reversing the Z-veto cut : $|m_{\ell\ell}-m_Z|<15~{\rm GeV}$
- \bullet W+jets : control sample by reversing identification cuts for one lepton

$H o WW^* o \ell \nu \ell \nu$: Analysis

- To improve the sensitivity, the analysis is divided according to:
 - Jet multiplicity:
 - 0 and 1 jet more sensitive to gluon-gluon fusion.
 - 2 jets more sensitive to VBF (vector boson fusion) production.
 - Lepton flavor : e-e, $e-\mu$, $\mu-\mu$: $e-\mu$ does not have Z background.

$H \to WW^* \to \ell\nu\ell\nu$: Results

95% C.L. exclusion of the SM higgs as a function of its mass.

Observed exclusion : $m_H \in [131, \text{See S. Brunet's talk}]$ GeV

$H \to WW^* \to \ell\nu\ell\nu$: Results

Local p-value as a function of the Higgs mass.

- The different channels are combined to set the limit on the SM Higgs boson :
 - Low mass channels : $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$, $H \rightarrow WW^{(*)} \rightarrow \ell^+ \nu \ell^- \bar{\nu}$, $H \rightarrow \tau \tau$, $VH \rightarrow b\bar{b}$
 - High mass channels : $H \to ZZ \to \ell^+\ell^- q\bar{q}$, $H \to ZZ \to \ell^+\ell^- \nu\bar{\nu}$, $H \to WW \to \ell\nu q\bar{q}$
- The combination procedure is based on the profile likelihood ratio test statistic :
 - Extracts the information on the signal strengh from the full likelihood
 - Takes into account the systematic uncertainties and their correlations
- Exclusion limits based on the CL_s method
- The exclusion is set on the ratio $\mu = \sigma/\sigma_{SM}$

Expected exclusion at 95% C.L.: $m_H \in [119, \text{See S. Brunet's talk}]$ GeV Observed exclusion: $m_H \in [110, 117.5]$, [118.4, 122.7], [128.6, See S. Brunet's talk] GeV

Consistency of the observed results with the background-only hypothesis.

The best-fit signal strength $\mu = \sigma/\sigma_{SM}$ as a function of the Higgs boson mass hypothesis.

Combination of the channels: injection plot

- An excess of events is observed \sim 126 GeV with a local significance of 2.6 σ :
- The local significance of $H \rightarrow \gamma \gamma$: 2.8 σ
- The local significance of $H \to ZZ^* \to 4\ell$: 2.1 σ
- The local significance of $H \to WW^* \to \ell^+ \nu \ell^- \bar{\nu}$: no excess.

Conclusions

- We are in an exciting period for the Higgs searches
- Allowed SM higgs boson has been constrained to a tiny region : $m_H \in [117.5,118.4], [122.7,128.6]$ GeV
- In the low-mass region no exclusion was possible due to a moderate excess of observed events compared to the background only expectation.
- The excess is most compatible with the SM Higgs hypothesis around 126 GeV (2.6 σ measured with 2.8 σ expected). Statistical significance not large enough to distinguish signal from the background fluctuations (yet).

Backup

The expected (dashed) and observed (solid) cross-section limits for the individual search channels.

Backup: The Atlas detector

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Backup: Test Statistics and p-values

Step 3: Run the experiment, get observed value of test statistic.

Step 4: Compute p-value

$$p(n \ge n_{obs}|H_0)$$

Example:

$$H_0$$
: $b = \mu = 6$
 $n_{obs} = 10$
p-value = 0.0839

A p-value is **not** the "probability H_0 is true"

But many often say that.

Statistics/Thomas R. Junk/TSI July 2009

4

Backup: local probability p0

Backup : The best-fit signal strength for $H o \gamma \gamma$

Backup: Pile-up effect

The $H \rightarrow ZZ$ is sensitive to the pile-up and has separated the analysis depending on the pile-up conditions.

Backup: References

"Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb-1 of pp collisions at sqrt(s)=7 TeV with ATLAS," arXiv:1202.1414 [hep-ex].

"Search for the Standard Model Higgs boson in the decay channel H->ZZ(*)->4l with 4.8 fb-1 of pp collision data at sqrt(s) = 7 TeV with ATLAS," arXiv:1202.1415 [hep-ex].

"Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-quark pair using up to 4.7 fb1 of pp collision data at s=7 TeV with the ATLAS detector at the LHC" https://cdsweb.cern.ch/record/1429664

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults