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recent analyses

Hidden Valley Jets appearing late

Charged, Massive dE /dx
Particles

Anomaly-Mediated Truncated Tracks
SUSY Breaking

calorimeter

muon
spectrometer
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triggering 1s grim..

getting long lived signatures on tape is tricky

» associated production
» specially designed triggers

specially designed triggers
level 1 is typically hardware — restricted!!
mostly designed at upper levels

Level 2/High level triggers

room for innovation
full event in HLT
some hardware restrictions in Level 2 (ATLAS).




tr‘igger‘ing iS gr‘im... ... and getting grimmer

single medium-p; objects not an option!

bunch spacing, protonsin your favorite rate limit
bunch, beam tunes and trigger squeezed driven by $$
here disk, cpu, etc.

focus

unprescaled @ end of 2012

em: 1e@22, 2e@12, 1e@12+2e@6, 1y @80, 2y @20, 1€ @20+EMS > 40

muon: 1u@18, 1u@40sl, 1@ 15+1u@10, 1u@15+ETSS > 30

tau: 1T1@125, 1T@29+1T@20, 1T@29+EMS > 35

jets: 1j@250, 3j@100, 4j@45, 5j@30, 1j@75+ETSS > 55, 1j@100+Hy > 400,
4j@40+Hr > 350

combo: 1u@18+1j@10, 1e@5+1u @6, 1T@20+1e@15, 2T@20+1U @15
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offline analysis

standard analyses

jets pr > 50 GeV
electrons pr > 10 — 20 GeV
muons pr > 10 — 20 GeV

EMsS > 50 GeV

long-lived searches

highly ionizing particles
highly displaced vertices
kinked tracks

truncated tracks
out-of-time energy deposits
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dden valley

Z[Z,, mixing

the ,, is long lived
Coupled it decays late in the detector

Phys.Lett.B651:374-379,2007 (M. Strassler, K. Zurek) G. Watts (UW/Seattle)




calorimeter

muon spectrometer
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calorimeter

Different techniques
are required for each
section of the
detector

muon spectrometer

G. Watts (UW/Seattle)
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the models

my = 120 GeV, 140 GeV allow proper lifetime (cT) to vary to give
My, = 20 GeV, 40 GeV decays through out the detector

my, = 120 GeV,m, = 20 GeV
v Inner Detector
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long lived particle triggers

b-tagging triggers

good for a decay a few millimeters from primary vertex
commissioned ~
huge backgrounds from QCD bb production

long lived neutral particle triggers

neutral particle decays mid-detector
appearance trigger
run for full 2011 dataset (5 fb~1)

G. Watts (UW/Seattle)
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3 triggers

trackless jet trigger decays late in inner detector

jet Er > 35 GeV

no tracks with p;r > 1 GeV near jet
muon spectrometer activity

low efficiency

log(Enaa/Eem)
jet Ex > 35 GeV
no tracks with py > 1 GeV near jet

log(Enaa/Egm) > 1.0
very good efficiency

muon spectrometer cluster trigger
three Rol clusters all close by
no jets
no tracks
really very good efficiency

ATL-PHYS-PU B-2009-082 G. Watts (UW/Seattle) 15




3 triggers

trackless jet trigger

jet Er > 35 GeV

no tracks with p;r > 1 GeV near jet
muon spectrometer activity

low efficiency

log(Enaa/Eem)
jet Ex > 35 GeV
no tracks with py > 1 GeV near jet

log(Enaa/Egm) > 1.0
very good efficiency

muon spectrometer cluster trigger
three muon clusters all close by
no jets
no tracks
really very good efficiency

decays late in inner detector

G. Watts (UW/Seattle)
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muon spectrometer vertex

The ATLAS muon
spectrometer is designed to | '
reconstruct muon tracks - It can do more than particle ID!
stand alone
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Analysis Strategy

>=1 Muon Cluster Trigger
2 back-to-back Vertices found in the Muon Spectrometer
No Jet or Track activity near the vertex
AR (jet, vertex) = 0.7 In1.94 fb~1 of

AR(5 GeV Track, vertex) = 0.4 data 0 events seen

Expected Backgrounds:

(15543) CHETX) R



http://arxiv.org/abs/1203.1303v1

expected signal
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limits

equal systematic error
contributions from
theory and efficiency
verification for our
signals.

myo = 140 GeV

myo = 120 GeV

Rol cluster trigger
MS vertex (per vertex)
Luminosity

Table 7.2; List of the systematic uncertainties.
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95% CL Limit: m =120 GeV, m =20 GeV
95% CL Limit: m, =120 GeV, mn_l_=40 GeV
95% CL Limit: m, =140 GeV, mn_l_=20 GeV
95% CL Limit: m, =140 GeV, mn_:_=4{] GeV

ATLAS

ILdt =1.94fp"
Vs=7 TeV

20 25

n, proper decay length [m]

myo (GeV) my, (GeV) Excluded Region

120 20
120 40

0.50 < e < 20.65 m
1.60 < e < 24.65 m
0.45 < e < 15.8
1.10 < c1 < &

140 20
140 40

G. Watts (UW/Seattle)
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anomaly-mediated SUSY
breaking

S+
Xl— N . .
\ u LSP, escapes detector, E;mssmg
nt small p - perhaps 100 MeV

- S+
mass differences between ¥;-

0 - . analysis is sensitive to decays
and ¥ is so small it has a long — . .
o occurring somewhere in
lifetime

ATLAS inner tracker

Chargino leaves hits in tracker until it decays!

Looked atm_: = 90.2,117.8,147.7 GeV, BR(¥f — i) = 1.0
1

L.Randall,R.Sundrum,Nucl.Phys.B 557,79(1999) w WiSent
G.F.Giudice,M.A.Luty,H.Murayama,R.Rattazzi, JHEP 12, 027(1gg§)." " (VV/>eattle)




detector signature

~ .. =~ 0
. %1" decaying into X +1

high-p; charged particle
interacting with TRT material

low-p; charged particle scattered
in materials resulting in badly
measured track py

reconstructed track
true particle track

G. Watts (UW/Seattle) 24




transition radiation tracker

—e— data

* between the silicon strips Background MC ATLAS Preliminary

: Signal events (LLO1,t(%")=1ns)
and the CalorlmEter Charginos in signal eve1nts (decay radius<863mm)

* average of 15 hits for a
charged track in the outer

-1
TRT (Ngutter) J Ldt = 4.7 fb

\s =7TeV

truncated Tracks have 5 | normal tracks
hits or less

G. Watts (UW/Seattle) 25




the analysis

1jet, pr > 75 GeV
E;mssmg > 55 GeV

3 jets, pr > 130, 60, 60 GeV

E;7M > 130 GeV

lepton veto

track: well measured, AR (track, pt >
0.5GeV) > 0.1, pr > 10 GeV

less than 5 hits in the TRT

304 events remainin 4.7 fb~! of data
optimized for 514 < r < 863 mm

the shape of the track pr

and backgrounds

G. Watts (UW/Seattle)

— spectra differentiates signal
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backgrounds

~ .. =~ 0
. %1" decaying into X +1

high-p; charged particle
interacting with TRT material

low-p; charged particle scattered
in materials resulting in badly
measured track py

reconstructed track
true particle track

G. Watts (UW/Seattle) 28




background track p; shapes

>
Q
G
P
4
Q
s
=

lus ;. track Ut
\?:5 1Eﬁ” /P > 0.3, N22>10

ATLAS
\s=7TeV, _I-Ldt =1.02fb"

ATLAS

\s=7TeV, JLdt -1.02fb"

Tracks / 1GeV

; ;
100 200 500 1000 500 1000
Previous Version of Analysis track p; [GeV] Previous Version of Analysis track p, [GeV]
shape for high pr tracks that shape for mismeasured low pr
interact tracks
select tracks with N2¥Le™ > 10. require EMSS1"8 < 100 Gev
no pixel hits

G. Watts (UW/Seattle) 29



Probability density

fit track p; shape

ATLAS Preliminary ATLAS Preliminary

Signal events (LLO1, -c(ﬁ) = 1ns)
Charginos in signal events
Hadron track background
Bad track background

Vs=7TeV, JLdt =47

Tracks / 1GeV

—e— Data

Fit result

= %
%4

100 200 500 1000 200 500 1000
track P, [GeV] track P, [GeV]
the 3 templates are fit to data: data and background fit
* the two background templates best fit has zero contribution from
are fit for py > 10 GeV signal template

* the signal template is included in
the fit for pr > 50 GeV

Fit prefers zero signal contribution!

G. Watts (UW/Seattle) 30



limits

(MAMSB: m__<32TeV, m<1.5TeV, tani=5, p>0)

—e— Observed 95% CL limit

-1 Expected 95% CL limit
\s=7TeV, JLdt =47fb Expected (+10)

ATLAS Preliminary

limit for the mass
previous LEP2 limit: m > 92 GeV

0

—eo— Observed 95% CL limit

\s=7TeV Expected 95% CL limit
Expected (£10)

I Ldt=4.7 fo" Expected (+20)

ATLAS Preliminary

50 100
Model independent limit

limit on production of truncated tracks

primary uncertainty is the theoretical cross section (27%)
backgrounds are data driven and so have very small uncertainty

ATLAS-CONF-2012-034 (Submitted EPJC)

G. Watts (UW/Seattle)
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massive & long lived

Travel slowly through the detector (f < 1)
Lifetime makes them stable w.r.t. the ATLAS detector.

Time-of-Flight

TileCal can measure timing
Previous version of this analysis used this technige

Model dependence on interaction of R-Hadrons with TileCal material
Skipped for this version of the analysis

Mass (dE /dx)

Pixel detector fires if >3100e™ deposited
Measures time-above-threshold

Timer maximum is equivalent to about 8.5 MIPS for a track
perpendicular to the pixel detector

Use Bethe-Block to infer mass

G. Watts (UW/Seattle)
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R-Hadron models Sone,

SUSY, but the LSP is colored

\% hadronizes into colored hadrons

J9,999, 9999, 49, 4qq, etc.
\ J
|

“they carry one
unit of R-Parity”

R-Hadrons

the R-Hadron will, unlike a normal neutral
LSP, have interactions in the ATLAS
detector!

three models are used (regge, generic, and “intermediate”)
the generic is used for limits, the other models are taken as a systematic error

G.R.Farrar, P.Fayet, Phys.Lett. B76 (1978)575-579. G. Watts (UW/Seattle)
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backup: model details

The first model assumes that R-hadrons containing gluinos are simulated according to [19]. This
model employs a triple-Regge formalism to describe hadronic scattering, and will henceforth be referred
to as Regge.

The second physics model described in [30, 31] and hereafter referred to as generic has been used
in other publications [32—34] and it imposes few constraints on allowed stable states. Doubly charged

R-hadrons and a wide variety of “charge reversal” signatures in the detector are possible. Hadronic
scattering is described through a purely phase space driven approach.

More recent models for the hadronic scattering of gluino R-hadrons predict that the majority of all
produced R-hadrons will be electrically neutral after just a few hadronic interactions. The third model
belongs to this family, is based on the bag-model calculations presented in [35] and is referred to as
intermediate.

G. Watts (UW/Seattle)
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dE /dx

ATLAS Preliminary

Gluino R-hadrons
Simulation

100 GeV
300 GeV

700 GeV

‘—'.

5 -1/ 05 0 05
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mass resolution
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ATLA
Preliminary

analysis

trigger
no dE /dx information available

: : missin
MIP in Calorimeter means E > &

EMSIN8 5 70 GeV
20% efficient

Data 201 1I Ldt = 2.06f"

® high P,
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A + ionization

t.t
Pty
offline
s 1500 2000 2500
E; 77" > 85GeV Mass [GeV]

isolated track pr > 50 GeV, p > 100 GeV
AR (track, p;y > 5 GeV track) > 0.25

dE /dx cut depends on 7. 333 events left

overin2.1 fbh~1
data
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data driven background

apply all cuts except for all tracks with p < 100

the dE/dx cut GeV

expected expected
background n and background dE /dx
p distributions distributions
\ )
|
randomly sample normalize to data
p, N, dE /dx from in low mass region
these distributions before dE /dx cut
G. Watts (UW/Seattle)
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results

. data_[ Ldt = 2.06fb"

ATLAS Preliminary data-driven bkg
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analyses on 2010 data

stopped gluinos

displaced vertices

R-Hadron

HIP search

Particles come to rest in the ATLAS
detector volume, and decay out-of-
time. (1201.5595, submitted to EPJC)

R-parity violating SUSY. Displaced
vertices with r > 4 mm. Shown
yesterday

Neutral R-hadron becomes charged in
calorimeter and leaves track in muon
system (1103.2984, PLB 701 (2011) 1)

Massive long lived highly ionizing
particles with large electric charge (g-
balls, stable micro black holes, etc.).
Energy loss in calorimeter and tracker
used (arxiv:1102.0459; PLB698:353-
370,2011)




Search Strategies

Life Time (m)

Search Strategy

>
7

Jets Leptons Etc.
Final State

T— Physics

G. Watts (UW/Seattle)
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conclusions

three analyses presented
Hidden Valley search, AMSB search, R-hadron search
= new triggering algorithms required
appearance triggers
unlikely possible to design new triggers for this run, but...

= non standard object ID

late appearance of jets, truncated tracks, out-of-time energy,
displaced vertices

= improving algorithms all the time
pile-up is improving too...
= |ots of information from the these detectors!!

how else can we combine this information to search for new
things!?

G. Watts (UW/Seattle) L4
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stable, charged (u-based)

electrically charged by the time they leave the calorimeter GMSB SUSY

charged, long lived particles
colored, but interact in calorimeter leading to a spray of
charged particles in the muon spectrometer
L=37 pb~?
trigger is the muon drift tube

reconstruction method 1:

fit inner detector track to imperfect muon spectrometer segments
take into account 8 which alters drift time
sub-par muon spectrometer segments also used

reconstruction method 2:

muon spectrometer based only
segment reconstruction starts from trigger information
efficiency is not great for low £5.

G. Watts (UW/Seattle)
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| Stable, charged (u
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Or a me

displaced vertices

displaced vertex

trigger

vertex reconstruction

standard

use tracks that have no pixel hits
reject vertices near material
sensitive starting at 4mm from PV

Efficiency

=
)
c
D
=
E=
L

SUSY++
L=33 pb~1

® Event selection
B Vertex selection

700 GeV §, 494 GeV T: 4 Muon selection

® Event selection
ATLAS simutation B Vertex selection

700 GeV g, 108 GeV j~ & Muon selection
"1

20 40

efficiency T e mml
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| displaced vertices
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displaced vertices
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stopped particles

Long-lived particles produced with low & can stop in detector
material and decay much later.

Most likely to stop in densest part of ATLAS = calorimeters.

Look for events with large energy deposits in calorimeter in
‘empty” bunches.

g
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backgrounds: calorimeter - 300 GeV gluino MC
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350 400 450 500
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| stopped particles
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stopped particles

|: Expected Limit+ 2 ¢

[ ] Expected Limit + 16

= Prospino SUSY
Leading Jet Energy > 100 GeV

= Observed Limit

Expected Limit

\s=7TeV
j Ldt=31pb"
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M; (GeV)
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