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Problem A.1

A cylindrical hoop of zero thickness, uniformly distributed massM , and radius R has a point
mass m attached to its circumference. The point mass position is characterized by the angle
θ measured from the vertical direction as shown in the figure. The hoop rolls without sliding
along a horizontal plane under the influence of gravity (the gravitational acceleration is g).

θ

M

R
m

(a) [5 points] Show that the kinetic energy of the system is

K =MR2θ̇2 +mR2θ̇2(1− cos θ),

where dot represents time derivative.

(b) [5 points] Obtain the Lagrangian of the system and the equation of motion for the
angle θ(t).

(c) [5 points] Keeping terms up to order θ and θ̇ in the equation of motion, determine the
frequency ω, and period T , of small oscillations around the stable equilibrium position.
Specify the approximation(s) made to arrive at this result.

(d) [5 points] Return to Part (b) and explicitly set M = 0. What is the equation of
motion for small oscillations in this case?

Solve this equation exactly and determine time t0 for the point mass to get from a
small initial angle θ(0) = θ0 to the bottom θ(t0) = 0.

(e) [5 points] Take the limit M → 0 for the period T in Part (c). Compare the result
with the time t0 in Part (d). Reconcile a discrepancy by examining the assumptions
made in each case.



UMD Physics Qualifier Exam, 20 August 2025, Day 1 2

Problem A.2

Consider a thin, hollow, conducting cylinder of radius a, which is infinitely long along the
z axis. Its two halves are separated by small lengthwise gaps on each side, and are kept
at different potentials +V0 and −V0. The figure below shows the cross section in the (x, y)
plane, where the gaps are at φ = 0 and φ = π in cylindrical coordinates (ρ, φ, z).
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(a) [1 points] We are interested in the electric potential V (ρ, φ), which, obviously, does
not depend on z because of translational symmetry.

What is the differential equation satisfied by V (ρ, φ)?

(b) [4 points] Using separation of variables in cylindrical coordinates, write the basis
functions satisfying the differential equation in Part (a), both inside (ρ < a) and
outside the cylinder (ρ > a), taking into account the expected behavior of V (ρ, φ) at
ρ→ 0,∞ and under the transformation φ→ φ+ 2π.

(c) [5 points] Write V (ρ, φ) as a sum over the basis functions from Part (b) with some
coefficients Cm using the dimensionless variable ρ̃ ≡ ρ/a. Then determine Cm from
the boundary condition at ρ = a. (No need to perform the sum over m at this stage.)

For the rest of the problem, consider only inside the cylinder (ρ < a).

(d) [3 points] By using V (ρ, φ) from Part (c) for small ρ, find the electric field E0 ≡
E(ρ = 0) at the origin, both magnitude and direction.

(e) [4 points] Calculate the radial component of the electric field Eρ(ρ, φ) = −∂V (ρ, φ)/∂ρ
by evaluating the sum in Part (c) after taking the derivative. Hint: Re-write sines as
exponentials, then sum the resulting geometric series as

∑∞
n=0 v

n = 1/(1− v).

(f) [5 points] Find V (ρ, φ) by integrating Eρ(ρ, φ) from Part (e) over ρ at a constant φ,
with the boundary condition V (ρ = 0) = 0. Hint: Use 1

1−u2 = 1
2

(
1

1−u +
1

1+u

)
.

Check that your final answer for V (ρ, φ) reproduces ±V0 at ρ→ a.

(g) [3 points] Re-write V (ρ, φ) from Part (f) in Cartesian coordinates as V (x, y). Find
and describe an equation for equipotential lines, and sketch them in the (x, y) plane.

The Laplacian in cylindrical coordinates: ∇2f(ρ, φ, z) = 1
ρ
∂
∂ρ

(
ρ∂f
∂ρ

)
+ 1

ρ2
∂2f
∂φ2

+ ∂2f
∂z2
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Problem A.3

Consider electrons confined to the two-dimensional (2D) surface (x, y) of a three-dimensional
(3D) material. The Hamiltonian of electrons is a 2× 2 matrix in the space of spin 1/2

H =
p2

2m
1+ λ (ẑ × p) · σ. (1)

The first term is the usual kinetic energy, where p = (px, py) is the 2D momentum, and 1

is the unit matrix in spin space. The second term represents spin-orbit interaction, where
λ > 0 is a coefficient, ẑ is a unit vector perpendicular to the plane, and σ are the Pauli
matrices acting on the electron spin. This term comes from an effective magnetic field along
ẑ×p, experienced by an electron with momentum p, because of the Lorentz transformation
of an electric field along ẑ, originating from termination of the 3D material at the 2D surface.

(a) [4 points] Find the eigenvalues E±(p) and spinor eigenvectors |p,±〉 of Hamiltonian
(1), which are also the eigenstates of momentum p. Indicate spin directions for |p,±〉.

(b) [4 points] Observe that the eigenenergiesE± depend only on the absolute value p = |p|.
Find the momentum pmin where the energy reaches its minimal value Emin and obtain
Emin as well.

(c) [3 points] Sketch the two energy branches E± versus p, starting from p = 0. Indicate
pmin and Emin on your sketch.

(d) [3 points] Draw the curves of constant energy E±(px, py)=EF >0 for the two branches
in the (px, py) plane. Indicate the directions of spin along these curves.

(e) [4 points] Suppose a perpendicular magnetic field Bz is applied along z, so the term
Hz = µBBzσz is added to Hamiltonian (1). Calculate E±(p) in this case.

(f) [3 points] Assuming µBBz � |Emin|, show how the sketch of E± versus p is modified
compared to Part (c). Find and indicate the energy splitting E+ − E− and spin
directions at p = 0.

(g) [4 points] Now suppose that, instead, an in-plane magnetic field Bx is applied along
x, so the term Hx = µBBxσx is added to Hamiltonian (1).

Calculate E±(p) in this case. Find the momentum p0 (both direction and magnitude)
where the two branches become degenerate, so that E+(p0) = E−(p0) = E0, and also
find E0.

Pauli matrices: σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, 1 =

(
1 0
0 1

)
.
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Problem A.4

This problem explores the mean-field theory of a ferromagnetic phase transition. Consider
a simple cubic lattice, where each site is occupied by an atom with the spin 1/2 (all atoms
are the same). The Hamiltonian for the spins is

H = −µ
∑
i

B · σi − J
∑
(ij)

σi · σj. (1)

The first term, where µ is the magnetic moment of an atom, describes interaction of an
external magnetic field B with the spins on sites i represented by the Pauli matrices σi. In
the second term, the sum is taken over pairs of neighboring sites (ij) and describes interaction
between their spins σi and σj. Assume that the interaction energy J > 0 is positive, and
the system is at temperature T . Set the Boltzmann constant to kB = 1.

(a) [4 points] First consider the case of J = 0, i.e., ignore the interaction term in Eq. (1).
Calculate the expectation value s = 〈σi〉 of the spin on a site i, for a given magnetic
field B and temperature T . Specify both the magnitude s and direction of s.

(b) [4 points] Now treat the interaction J between the spins in mean-field approximation.
For a given site i in the second term of Eq. (1), replace σj by its expectation value s
(yet unknown). On a simple cubic lattice, how many neighbors does the site i have?

Then the second term in Eq. (1) produces an additional effective magnetic field acting
on the spin σi. Using the result of Part (a), obtain a transcendental equation for s in
the presence of B.

(c) [4 points] Now set B = 0 in the transcendental equation for s obtained in Part (b).
Show graphically that the resulting equation has only a trivial solution s = 0 for T > Tc,
but acquires a nontrivial solution s 6= 0 for T < Tc. Determine the ferromagnetic
transition temperature Tc (the Curie temperature) in terms of J .

(d) [4 points] From the transcendental equation in Part (c) for B = 0, find the (nonzero)
value of s in the limit T → 0. Interpret the result.

(e) [5 points] From the transcendental equation in Part (c) for B = 0, find s(T ) for
T < Tc in the vicinity of the transition temperature Tc − T � Tc. Express the answer
in terms of T and Tc, and discuss the limit of s(T ) at T → T−

c .

Hint: Assume that s is small and use Taylor expansion in s (see the info at the bottom).

(f) [4 points] Now go back to the transcendental equation for B 6= 0 obtained in Part (b).
From this equation, obtain the spin susceptibility χ(T ) = ds/dB at B = 0 for T > Tc.
Express the answer in terms of T − Tc and discuss the behavior of χ(T ) at T → T+

c .

Useful information: tanhx ≈ x− x3/3 for x� 1.
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