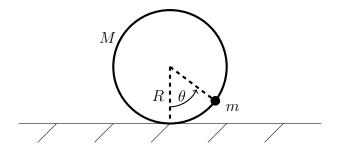
UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland

PHYSICS Ph.D. QUALIFYING EXAMINATION PART A

August 20, 2025 10:00 am - 12:00 pm

August 21, 2025 10:00 am – 12:00 pm

A cylindrical hoop of zero thickness, uniformly distributed mass M, and radius R has a point mass m attached to its circumference. The point mass position is characterized by the angle θ measured from the vertical direction as shown in the figure. The hoop rolls without sliding along a horizontal plane under the influence of gravity (the gravitational acceleration is g).



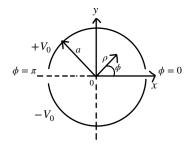
(a) [5 points] Show that the kinetic energy of the system is

$$K = MR^2\dot{\theta}^2 + mR^2\dot{\theta}^2(1 - \cos\theta),$$

where dot represents time derivative.

- (b) [5 points] Obtain the Lagrangian of the system and the equation of motion for the angle $\theta(t)$.
- (c) [5 points] Keeping terms up to order θ and $\dot{\theta}$ in the equation of motion, determine the frequency ω , and period T, of small oscillations around the stable equilibrium position. Specify the approximation(s) made to arrive at this result.
- (d) [5 points] Return to Part (b) and explicitly set M = 0. What is the equation of motion for small oscillations in this case?
 - Solve this equation exactly and determine time t_0 for the point mass to get from a small initial angle $\theta(0) = \theta_0$ to the bottom $\theta(t_0) = 0$.
- (e) [5 points] Take the limit $M \to 0$ for the period T in Part (c). Compare the result with the time t_0 in Part (d). Reconcile a discrepancy by examining the assumptions made in each case.

Consider a thin, hollow, conducting cylinder of radius a, which is infinitely long along the z axis. Its two halves are separated by small lengthwise gaps on each side, and are kept at different potentials $+V_0$ and $-V_0$. The figure below shows the cross section in the (x, y) plane, where the gaps are at $\phi = 0$ and $\phi = \pi$ in cylindrical coordinates (ρ, ϕ, z) .



(a) [1 points] We are interested in the electric potential $V(\rho, \phi)$, which, obviously, does not depend on z because of translational symmetry.

What is the differential equation satisfied by $V(\rho, \phi)$?

- (b) [4 points] Using separation of variables in cylindrical coordinates, write the basis functions satisfying the differential equation in Part (a), both inside ($\rho < a$) and outside the cylinder ($\rho > a$), taking into account the expected behavior of $V(\rho, \phi)$ at $\rho \to 0, \infty$ and under the transformation $\phi \to \phi + 2\pi$.
- (c) [5 points] Write $V(\rho, \phi)$ as a sum over the basis functions from Part (b) with some coefficients C_m using the dimension less variable $\tilde{\rho} \equiv \rho/a$. Then determine C_m from the boundary condition at $\rho = a$. (No need to perform the sum over m at this stage.)

For the rest of the problem, consider only inside the cylinder $(\rho < a)$.

- (d) [3 points] By using $V(\rho, \phi)$ from Part (c) for small ρ , find the electric field $\mathbf{E}_0 \equiv \mathbf{E}(\rho = 0)$ at the origin, both magnitude and direction.
- (e) [4 points] Calculate the radial component of the electric field $E_{\rho}(\rho, \phi) = -\partial V(\rho, \phi)/\partial \rho$ by evaluating the sum in Part (c) after taking the derivative. *Hint:* Re-write sines as exponentials, then sum the resulting *geometric* series as $\sum_{n=0}^{\infty} v^n = 1/(1-v)$.
- (f) [5 points] Find $V(\rho, \phi)$ by integrating $E_{\rho}(\rho, \phi)$ from Part (e) over ρ at a constant ϕ , with the boundary condition $V(\rho = 0) = 0$. Hint: Use $\frac{1}{1-u^2} = \frac{1}{2} \left(\frac{1}{1-u} + \frac{1}{1+u} \right)$. Check that your final answer for $V(\rho, \phi)$ reproduces $\pm V_0$ at $\rho \to a$.
- (g) [3 points] Re-write $V(\rho, \phi)$ from Part (f) in Cartesian coordinates as V(x, y). Find and describe an equation for equipotential lines, and sketch them in the (x, y) plane.

The Laplacian in cylindrical coordinates: $\nabla^2 f(\rho, \phi, z) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$

Consider electrons confined to the two-dimensional (2D) surface (x, y) of a three-dimensional (3D) material. The Hamiltonian of electrons is a 2×2 matrix in the space of spin 1/2

$$H = \frac{\mathbf{p}^2}{2m} \mathbb{1} + \lambda \left(\hat{\mathbf{z}} \times \mathbf{p} \right) \cdot \boldsymbol{\sigma}. \tag{1}$$

The first term is the usual kinetic energy, where $\mathbf{p} = (p_x, p_y)$ is the 2D momentum, and $\mathbb{1}$ is the unit matrix in spin space. The second term represents spin-orbit interaction, where $\lambda > 0$ is a coefficient, $\hat{\mathbf{z}}$ is a unit vector perpendicular to the plane, and $\boldsymbol{\sigma}$ are the Pauli matrices acting on the electron spin. This term comes from an effective magnetic field along $\hat{\mathbf{z}} \times \mathbf{p}$, experienced by an electron with momentum \mathbf{p} , because of the Lorentz transformation of an electric field along $\hat{\mathbf{z}}$, originating from termination of the 3D material at the 2D surface.

- (a) [4 points] Find the eigenvalues $E_{\pm}(\mathbf{p})$ and spinor eigenvectors $|\mathbf{p}, \pm\rangle$ of Hamiltonian (1), which are also the eigenstates of momentum \mathbf{p} . Indicate spin directions for $|\mathbf{p}, \pm\rangle$.
- (b) [4 points] Observe that the eigenenergies E_{\pm} depend only on the absolute value $p = |\mathbf{p}|$. Find the momentum p_{\min} where the energy reaches its minimal value E_{\min} and obtain E_{\min} as well.
- (c) [3 points] Sketch the two energy branches E_{\pm} versus p, starting from p = 0. Indicate p_{\min} and E_{\min} on your sketch.
- (d) [3 points] Draw the curves of constant energy $E_{\pm}(p_x, p_y) = E_F > 0$ for the two branches in the (p_x, p_y) plane. Indicate the directions of spin along these curves.
- (e) [4 points] Suppose a perpendicular magnetic field B_z is applied along z, so the term $H_z = \mu_B B_z \sigma_z$ is added to Hamiltonian (1). Calculate $E_{\pm}(p)$ in this case.
- (f) [3 points] Assuming $\mu_B B_z \ll |E_{\min}|$, show how the sketch of E_{\pm} versus p is modified compared to Part (c). Find and indicate the energy splitting $E_+ E_-$ and spin directions at p = 0.
- (g) [4 points] Now suppose that, instead, an in-plane magnetic field B_x is applied along x, so the term $H_x = \mu_B B_x \sigma_x$ is added to Hamiltonian (1).

Calculate $E_{\pm}(\mathbf{p})$ in this case. Find the momentum \mathbf{p}_0 (both direction and magnitude) where the two branches become degenerate, so that $E_{+}(\mathbf{p}_0) = E_{-}(\mathbf{p}_0) = E_0$, and also find E_0 .

Pauli matrices:
$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

This problem explores the mean-field theory of a ferromagnetic phase transition. Consider a simple cubic lattice, where each site is occupied by an atom with the spin 1/2 (all atoms are the same). The Hamiltonian for the spins is

$$H = -\mu \sum_{i} \mathbf{B} \cdot \boldsymbol{\sigma}_{i} - J \sum_{(ij)} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}. \tag{1}$$

The first term, where μ is the magnetic moment of an atom, describes interaction of an external magnetic field \boldsymbol{B} with the spins on sites i represented by the Pauli matrices $\boldsymbol{\sigma}_i$. In the second term, the sum is taken over pairs of neighboring sites (ij) and describes interaction between their spins $\boldsymbol{\sigma}_i$ and $\boldsymbol{\sigma}_j$. Assume that the interaction energy J>0 is positive, and the system is at temperature T. Set the Boltzmann constant to $k_B=1$.

- (a) [4 points] First consider the case of J=0, i.e., ignore the interaction term in Eq. (1). Calculate the expectation value $\mathbf{s} = \langle \boldsymbol{\sigma}_i \rangle$ of the spin on a site i, for a given magnetic field \mathbf{B} and temperature T. Specify both the magnitude s and direction of s.
- (b) [4 points] Now treat the interaction J between the spins in mean-field approximation. For a given site i in the second term of Eq. (1), replace σ_j by its expectation value s (yet unknown). On a simple cubic lattice, how many neighbors does the site i have? Then the second term in Eq. (1) produces an additional effective magnetic field acting on the spin σ_i . Using the result of Part (a), obtain a transcendental equation for s in the presence of B.
- (c) [4 points] Now set B=0 in the transcendental equation for s obtained in Part (b). Show graphically that the resulting equation has only a trivial solution s=0 for $T>T_c$, but acquires a nontrivial solution $s\neq 0$ for $T< T_c$. Determine the ferromagnetic transition temperature T_c (the Curie temperature) in terms of J.
- (d) [4 points] From the transcendental equation in Part (c) for B = 0, find the (nonzero) value of s in the limit $T \to 0$. Interpret the result.
- (e) [5 points] From the transcendental equation in Part (c) for B = 0, find s(T) for $T < T_c$ in the vicinity of the transition temperature $T_c T \ll T_c$. Express the answer in terms of T and T_c , and discuss the limit of s(T) at $T \to T_c^-$.

Hint: Assume that s is small and use Taylor expansion in s (see the info at the bottom).

(f) [4 points] Now go back to the transcendental equation for $B \neq 0$ obtained in Part (b). From this equation, obtain the spin susceptibility $\chi(T) = ds/dB$ at B = 0 for $T > T_c$. Express the answer in terms of $T - T_c$ and discuss the behavior of $\chi(T)$ at $T \to T_c^+$.

Useful information: $\tanh x \approx x - x^3/3$ for $x \ll 1$.