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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

 

You may keep this packet with the questions after the exam. 



Problem I.1

The rotation curve of a galaxy is a plot of the orbital speeds of visible stars versus their
radial distance from the galactic center. This is shown below for our Milky Way galaxy.

0 20 40 60 80 100
0

100

200

300

Sun

distance from center of Milky Way [thousands of light years]

or
b
it
al

sp
ee
d
[k
m
/s
]

(a) [5 points] According to Newton/Kepler's law, the orbital speed of a star in the outer
parts of the galaxy decreases with distance r from the galactic center. Derive a formula
that describes this. You may assume that the star is su�ciently far out so that the
total mass of the galaxy can be taken to be a constant point mass M .

(b) [5 points] The rotation curve, however, shows a fairly �at speed distribution. Sup-
pose we assume there is a spherically symmetric invisible mass distribution inside and
outside the visible galaxy. Let the total mass density be ρ(r). For a star in Keplerian
orbit inside such mass distribution, deduce how ρ(r) must vary with r if the speed
distribution is assumed constant. How does M(r) vary with r?

(c) [5 points] Observations indicate that the density of luminous (visible) matter in our
galaxy decreases with distance as ρL(r) ∼ r−3.5. How does this compare with the mass
density distribution in (b), and what does this imply for the distributions of visible
matter and invisible (dark) matter, especially at large r?

(d) [5 points] There is evidence, from dwarf galaxies, etc, that the �at speed distribution
persists up to 300,000 light years, or, about six times the radius of the Milky Way.
If so, what are the implications for the relative mass ratio between visible and dark
matter? [Refer to your results in part (b).]

(e) [5 points] In one approach, referred to as Modi�ed Newtonian Dynamics, Newton's
second law is modi�ed to F = ma2/a0, for small accelerations a << a0, where a0

is a constant. Show how this hypothesis could �explain� the constant rotation curve
described above. Given that there is a relatively �rm basis to expect Newton's equation
to be a vector relationship, how would you assess this approach?

1



Problem I.2

(a) [4 points] A charge +q is located at (x, y, z) = (0, 0, h) above an in�nite grounded
conducting plate located in the x−y plane at z = 0. Calculate the electric potential for
z > 0 by the method of images. Show clearly that your solution satis�es the boundary
condition of zero tangential E �eld at the plate. What is the force on the charge +q
due to induced charges on the conducting plate? [Use k = 1/(4πε0).]

(b) [5 points] Suppose we replace the +q charge with a permanent point dipole p = p0ẑ.
By modeling the dipole as two opposite closely spaced charges, deduce which way the
image dipole points. Using the formulae provided below, calculate the electric potential
of the system for z > 0. Show clearly that your solution satis�es the boundary condition
of zero tangential E �eld at the plate, and that it is consistent with your deduced dipole
directions.

(c) [3 points] Calculate the E �eld at z = h due to the image dipole p0. Which way is
the force between the dipoles?

(d) [5 points] Suppose we replace the +q charge from part (a) with a spherical, neutral
conductor of radius a. In what follows, assume a << h. You are reminded that, in
the presence of any applied electric �eld, the spherical conductor will develop a dipole
moment p = Eapplieda

3/k. Suppose such a dipole moment is formed, in the ẑ direction,
as an initial �uctuation. From your results (b) and (c), calculate the ratio of the E
�eld (at z = h) from the induced dipole to the �uctuation Eapplied �eld?.

(e) [4 points] Discuss the stability of this situation: under what condition on h is the initial
�uctuation of the Eapplied �eld self-consistent with the E �eld from the induced charges
on the conducting plate? If this condition is obtained, what will be the subsequent
motion of the sphere? Is the condition on h you obtain realistic given the assumption
a/h << 1?

(f) [4 points] Suppose h is large so that your initial �uctuation is not self-consistent.
Qualitatively, state brie�y what will be the subsequent evolution of the system; in
particular, will the sphere move signi�cantly?; and/or, how will the initial charge
distribution evolve?

Potentially useful: The electric potential due to a point dipole p, at position vector r from
the dipole center, is given by φ(r) = kp ·r/r3. The electric �eld resulting from this potential
is E(r) = (k/r3)[3r̂(p · r̂)− p].
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Problem I.3

For this problem a chain is de�ned as a classical, one-dimensional extended object which
lives on the links of a three dimensional cubic lattice with link length a, and has energy per
unit length ε. We will ignore any interaction of the chain with itself (i.e. there is no extra
energy if the chain crosses itself, or if two segments of the chain lie on the same link of the
lattice).

Suppose that one end of the chain is �xed at the origin, but that the number of links and
the position of the other end can �uctuate.

(a) [5+5 points] Assuming the chain is in thermal equilibrium at temperature T , evaluate
(i) its partition function, and (ii) its average length.

(b) [5 points] The chain cannot be in equilibrium above some temperature Tc. Find an
expression for Tc, and describe what happens to the chain as T approaches it from
below.

Now suppose that the number of links in the chain is �xed, and that both ends are �xed, at
a distance L from each other. Let the number of such con�gurations be denoted by g(L).
You need not evaluate g(L), and your answers may refer to g(L).

(c) [5 points] Assuming the chain is in thermal equilibrium at temperature T , what is
the entropy of the chain?

(d) [5 points] Using thermodynamic reasoning, and treating L as a continuous state pa-
rameter, �nd the magnitude and direction of the force exerted by the chain on the
anchors at its ends. (Hint: The internal energy of the chain is determined only by the
number of links, so is independent of the distance L and the temperature.)
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Problem I.4

At t = 0 a particle of rest mass m, charge e, is placed in a uniform electric �eld E = E0ŷ
with an initial velocity v = v0x̂, where v0 may be comparable to c.

(a) [6 points] Calculate for t > 0 the time dependence of the relativistic particle's mo-
menta p = (px, py), and energy. [Use standard de�nitions β = v/c and γ2 = (1−β2)−1.]

(b) [7 points] From the results of (a), calculate the particle velocities vx(t) and vy(t).
Identify a characteristic time τ such that for t � τ the particle energy is very close
to the initial relativistic mass energy and for t � τ the energy much exceeds this
initial energy. Write an expression for τ in terms of the parameters of the problem,
(e,m,E0, v0, c), and rewrite the velocities in terms of τ , v0, and c. Make a sketch of
the velocities as a function of time. What are (vx, vy) for t→∞?

(c) [7 points] Solve for x(t) and y(t) if x(0) = 0, y(0) = 0. Derive an expression for the
trajectory y(x).

Now consider this problem from the viewpoint of the reference frame in which the particle
is initially at rest.

(d) [5 points] Based on what you know about the motion in the lab frame, what is the
velocity of the particles as t′ →∞ in the transformed frame?

Potentially useful:∫
ds

(1 + s2)1/2
= sinh−1(s), cosh2(s)− sinh2(s) = 1.
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Problem I.5

n1

n2
A

B

θ1

θ2

Fermat's principle states that the path of a light ray between
points A and B through media with varying index of refraction n(x)
minimizes the total travel time t.

(a) [8 points] Use Fermat's principle to derive Snell's law at a sin-
gle interface of dissimilar materials, which relates the refraction
indices n1 and n2 and normal incidence angles θ1 and θ2.

If we write the travel time as a path integral

t =

`B∫
`A

d`

v(`)
, (1)

we can cast Fermat's principle in terms of variational calculus.

(b) [4 points] Show that Eq. (1) can be written as

t =
1

c

∫
n(x, y)

√
1 + y′2 dx. (2)

where y′ = dy
dx

and c is the speed of light in vacuum.

(c) [8 points] Use the Euler-Lagrange equation associated with Eq. (2) to show that when
n(x, y)→ n(x), the optimal path conserves the quantity

n(x)y′√
1 + y′2

. (3)

(d) [5 points] Show that Eq. (3) is equivalent to Snell's law.
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