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Do any four problems. Each problem is worth 25 points. 

Start each problem on a new sheet of paper (because different 

faculty members will be grading each problem in parallel). 

 

Be sure to write your Qualifier ID (“control number”) at the top of 

each sheet — not your name! — and turn in solutions to four 

problems only.  (If five solutions are turned in, we will only grade 

# 1 - # 4.) 

 

At the end of the exam, when you are turning in your papers, 

please fill in a “no answer” placeholder form for the problem that 

you skipped, so that the grader for that problem will have 

something from every student. 

 

You may keep this packet with the questions after the exam. 

 



Problem II.1

Consider a particle of mass m and charge q confined to move on a one-dimensional ring
of radius R. Model the quantum state of the particle by a wavefunction ψ(x) subject to
periodic boundary conditions, ψ(x + 2πR) = ψ(x). The ring is threaded by a solenoid of
radius L < R generating a magnetic flux Φ. The Hamiltonian of the particle is

H =
(p− qA)2

2m

where A = Φ
2πR

is the component of the vector potential along the ring.

(a) [5 points] For Φ = 0, show that ψk(x) = eikx is a solution of the time-independent
Schrodinger equation and compute the energy E as a function of k. What values of k
are consistent with the boundary conditions?

(b) [5 points] Now suppose Φ 6= 0. Repeat the analysis from part (a) to find the energy
levels as a function of Φ.

(c) [5 points] How do the energy levels at Φ = 0 compare to those at Φ = 2π~
q
? How do

the energy levels at Φ compare with those at −Φ? If an experimental apparatus can
only measure the energy (and not the value of k), what can be determined about the
magnetic flux Φ?

Now suppose we place a very high barrier of width W which prevents the particle from
moving around the entire ring. Model this barrier as a potential V (x) of the form

x ∈ (0, 2πR−W ) : V (x) = 0,

x ∈ [2πR−W, 2πR] : V (x) =∞.

(d) [2 points] In the presence of the barrier, what conditions does a finite energy state
ψ(x) obey at x = 0 and x = 2πR −W? Consider another wavefunction ψ̃(x) defined
by ψ(x) = eiαxψ̃(x). What conditions does ψ̃(x) obey at x = 0 and x = 2πR−W?

(e) [5 points] Find the energy levels of the particle in the presence of the barrier. You
may find it useful to work in terms of ψ̃ and choose α to simplify the problem.

(f) [3 points] Consider the limit of a very thin barrier, so that 0 < W � R. How do the
energy levels depend on Φ? If an experimental apparatus can only measure the energy,
what can be determined about the magnetic flux Φ? Interpret your result physically.

1



Problem II.2

(a) [8 points] Derive the energies and normalized eigenstates of a particle in an infinite
square well which extends from x = 0 to x = a.

Two identical spinless bosons are placed in the infinite square well. They interact weakly
with one another, via the potential

V (x1, x2) = −a V0 δ(x1 − x2),

where V0 is a constant with the dimensions of energy, and a is the width of the well.

(b) [8 points] Ignoring the interaction between the particles, find the ground state and
the first excited state of the two-particle system – both the wave functions and the
associated energies.

(c) [9 points] Use first-order perturbation theory to estimate the effect of the particle-
particle interaction on the energies of the ground state and the first excited state.

Possibly useful:∫ π
0

sin2 y dy = π/2∫ π
0

sin4 y dy = 3π/8∫ π
0

sin6 y dy = 5π/16
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Problem II.3

Consider an incident wave packet, ψin(r, t), with an energy spread ∆E, scattering off a target
(e.g., neutrons scattering off the iridium atom), and a resonance of angular momentum l~,
width ΓR and energy ER is measured in an experiment. While the scattering is resonant
in partial wave l, the contribution from other partial waves to the scattering amplitude is
assumed to be negligible.

(a) [5 points] How can a resonance be identified experimentally?

The following steps will guide you to identify another signature of a resonance when the
resonance is broad compared with the energy spread of the incident wave packet, ΓR � ∆E.

The wavefunction describing the elastic scattering of a wave packet off a target at origin
is

ψ(r, t) = ψin(r, t) + ψsc(r, t), (1)

where ψsc(r, t) is given by

ψsc(r, t) =

∫
d3p

(2π)3/2
φ(pẑ)

f(pẑ, pr̂)

r
eipr−iEt. (2)

Here, φ(p)e−iEt is the Fourier transform of ψin(r, t) to three-momentum p. For simplicity
the momentum of the incident wave packet is assumed to be peaked along the z direction,
p = pẑ. Additionally, r =

√
x2 + y2 + z2 and E is the energy of the incident wave. Recall

that the scattering amplitude f has a partial-wave expansion of the form

f(p,p′) =
∑
l

(2l + 1)
eiδl sin(δl)

p
Pl(p · p′) (3)

in terms of phase shifts δl, where Pl is the Legendre polynomial of degree l.

(b) [8 points] Assuming the conditions stated for the resonance under consideration in
this problem, show that at large r:

ψsc(r, t)→
f(pẑ, pr̂)

r
ψin((r + δ′l)ẑ, t), (4)

up to an unimportant overall phase factor. δ′l denotes the derivative of δl with respect
to p.

Hint: Assume the wave packet is sharply peaked around some energy p in the region
close to the resonance momentum, pR and Taylor expand eiδl(p) and sin(δl(p)) around p.

(c) [4 points] Interpret the result given in Eq. (4) by comparing the scattering wave with
the incident wave at i) the same time, ii) the same position. Ignore the overall differ-
ence in the amplitude of the waves and be as quantitative as possible.
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(d) [4 points] Assume that δ′l < 0. What is the condition on δ′l such that the causality is
not violated? Hint: Keep in mind that the target has a finite size d in the z direction.

(e) [2 points] Assume that δ′l > 0. Is it necessary to ensure that a condition similar to
that in part (b) holds?

(f) [2 points] A physical interpretation of a resonant scattering is in terms of a metastable
state, in which the projectile is captured temporarily by the target before it decays
and re-emits the scattering wave. Which of the scenarios discussed above is consistent
with this physical picture, part (c) or (d)?
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Problem II.4

The parity operator in one dimension, P1, reverses the sign of the position coordinate, x:

P1ψ(x) = ψ(−x).

(a) [5 points] Find the eigenvalues and eigenfunctions of the parity operator. Is the parity
operator Hermitian? Explain.

(b) [5 points] Calculate the commutator of P1 with the position operators, [P1, x̂], and
with the position operator squared, [P1, x̂

2].

(c) [3 points] For a particle moving in a one-dimensional potential V (x), what condition
must V (x) satisfy for parity to be a symmetry (that is, [H,P1] = 0)? Explain.

(d) [4 points] Consider V (x) = k|x|. Is the lowest energy eigenstate also an eigenfunction
of P1? If so, what is its parity? Explain briefly.

For the following, the angular momentum operator in 3-dimensions is given by L̂ = x̂× p̂.

(e) [3 points] Calculate the commutator of L̂ with the position operators x̂. That is,
calculate [L̂i, x̂j], where i, j run over the 3 Cartesian directions x, y and z. (Hint: first
consider L̂x, then generalize from that.) Also calculate the commutator of L̂ with x̂2.

(f) [5 points] For a spinless particle moving in a 3-dimensional potential V (x), what
condition must the potential satisfy for the angular momentum to be a generator of a
symmetry? Explain. If V (x) indeed satisfies this condition, what are the implications
for the eigenstates of H?

5



Problem II.5

A particle of charge e and mass m moves in an external magnetic field along the z-direction
with magnitude B, in a volume V = L3 with L� mc

eB
.

(a) [5 points] Using the gaugeA = (Ax, 0, 0), show that the time-independent Schrödinger
equation can be written as

~ωc
2

[(
−i ∂
∂x′

+ y′
)2

− ∂2

∂y′2
− ∂2

∂z′2

]
Ψ = EΨ.

where ωc = eB
m

and the unitless coordinates x′ = x/`, y′ = y/`, and z′ = z/`. Give the
“magnetic length” ` in terms of ωc and other quantities in the problem.

(b) [5 points] Use the ansatz Ψ(r) ∼ eikx`x
′
eikz`z

′
φ(y′) to write an equation for φ(y′).

What is the energy eigenvalue spectrum?

(c) [5 points] Use the finite size of the volume to determine the degeneracy of each state
with unique eigenenergy.

(d) [5 points] Use these levels to evaluate the single-particle partition function Z at high
temperature T in the limit where ~ωc � kBT (kB is the Boltzmann constant). Retain
the lowest-order term dependent on magnetic field.

(e) [5 points] Use the partition function to calculate the magnetic susceptibility χ at
high temperature. Show that it is diamagnetic for small fields and obeys Curie’s law,
χ ∝ T−1.

Potentially useful:∫ ∞
0

e−x
2

dx =
√
π/2

ln(1 + x) ≈ x, x� 1.
sinhx ≈ x+ x3/6, x� 1.
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