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Do any four problems. Each problem is worth 25 points.
Start each problem on a new sheet of paper (because different
faculty members will be grading each problem in parallel).

Be sure to write your Qualifier ID (“control number”) at the
top of each sheet — not your name! — and turn in solutions to
four problems only. (If five solutions are turned in, we will
only grade # 1 - #4.) For whichever problem (or problems)
you skip, fill in a placeholder form so that the grader for that
problem will have something from every student.

You may keep this packet with the questions after the exam.



(a)

Problem I1.1

|6 points| Consider a one-dimensional simple harmonic oscillator: a particle with mass
m bound to a quadratic potential V' = %/{;mg. Show by explicit calculation that
(tnl g p?|tn) = (un|3ka?|u,)

holds for the eigenstates |u,), which are normalized in the usual way.

|6 points| Write down the Hamiltonian for a system in which there are two non-
identical particles (of mass m; and ms) moving in one dimension and interacting via
a quadratic potential V = %k(xz — x1)?, where x; is the position of the first particle
and x5 is the position of the second particle. Find the energy of the ground state and
its wavefunction in coordinate space.

|7 points| Explain how the energy and wavefunction of the ground state would be
modified if the system in part (b) was composed of two identical spin % particles.

|6 points| Now add a spin-spin interaction between the identical spin % particles given
by a(xa — 1)*01 - 02, where « is a small positive constant and o = 0,& + 0,9 + 0. 2.
Using perturbation theory, find the energy of the ground state to first order in a.

Possibly useful information: [ yle v’ de = 37 /4.
al = /2 (x — %)
o= VB )



Problem I1.2

Consider a linear triatomic molecule with ions constrained to move only along the axis of
the molecule (which can be taken as the z-axis). The molecule consists of two ions of mass
m and charge —e that are symmetrically located at either side of an ion of mass M = 2m
and charge +2e at equilibrium. The complicated forces between the ions are approximated
by two springs with spring constant k, and equilibrium length b, as shown in the figure.
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(a) |2 points| Write down the Hamiltonian for this system of three coupled masses.

(b) [4 points| Show that the following transformation

0= 5(Qp—V3Qy)
T2 = _%QB

T3 = %(QB-F\@QA)

simplifies both the kinetic and the potential energies and eliminates the center-of-mass
motion.

(c) [8 points| Q4 and Qp are normal-mode coordinates describing the internal vibrations
of the molecule. These modes satisfy

Q) =Q;(0)e™", j= (A B).

Describe the motion of the ions in each of the normal modes. Determine the oscillation
frequencies w; and the electric dipole moments D; for the two internal modes.

The molecule is actually a quantum mechanical system. Initially it is in its ground state;
it is then subjected to a weak uniform electric field E,(t) = Ey(w) cos(wt). The perturbing
interaction between its dipole moment and the electric field is H' = —DE,, where D is
the electric dipole moment and FE, is the electric field component along the molecule. The
transition probabilities Pj(w,t) for excitation of states with one quantum either in mode A
or in mode B is

| Voy 17 sin®[(wo; — w)t/2]
Pyi(w,t) =
07 (Cd, ) hQ (WOj N w)2 )

where | Vp; |? is the matrix element of the perturbing Hamiltonian, and in this case is
| Voj I*=| DjEo(w) |? for mode j of frequency wy;.




(d) |3 points| Use the equation above to obtain expressions for Pya(w,t) and Pyg(w,t).

(e) [8 points| Determine the transition rates R; = 4 [ dwPy;(w,t), for a uniform inco-

herent beam of radiation propagating in the z-direction and polarized along x, whose
intensity per frequency interval is given by J(w) = %ceo| Eo(w) |, where c is the speed
of light in vacuum and ¢, is the permittivity of free space. Assume that J(w) depends

weakly on frequency.

o0
Possibly useful information: [ S’;‘#dx =T.
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Problem I1.3

Consider diffraction of quantum particles of wavevector k; on a system of N identical scat-
terers located a distance b apart along the direction of incidence 2z, as shown in the figure
below.

I\ 8

(N —1)b

T) m ©) O O O T

Each individual scatterer is characterized by a potential Uy(r) and the corresponding Born
amplitude of scattering fy(#), which is assumed to be a smooth, featureless function.

(a) |3 points| First consider the case of only one scatterer (N = 1). In the Born ap-
proximation, express the amplitude fy(0) and the differential cross section dog/dS) of
scattering in terms of Uy(r) and k.

(b) [6 points| Now consider N scatterers. The total potential is

N-1

U(r) =Y Us(lr — nbzl),

n=0
where 2 is the unit vector along the 2z axis.

In the Born approximation, calculate the amplitude f(0) and the differential cross
section do /dS) of scattering in terms of fo(0), k, b, and N.

Explore the answer obtained in Part (b) for various values of kb as follows:
(c) |4 points] What are f(0) and do/dS2 in the limit Nbk < 1?7 Interpret the result.

In the case of kb > 1 and N > 1, answer the following questions and give geometrical
interpretations of your results:

(d) |4 points| Sketch do/dS2 as a function of 6. Calculate the angles 6,, at which do/dS2
has strong maxima.

(e) [4 points] What is the total number of strong maxima for a given value of kb?

(f) |4 points| Discuss how the height and the width of a strong maximum depend on
N > 1. The width A6, = 246, is determined by the angles 6,, + 06,, where do/df}
vanishes.

Useful formula:




Problem 11.4

Two particles interact via a spin-spin Hamiltonian term AS; - S5, where A is a positive
constant and S, 2 are the spin angular momenta of the two particles. Particle 1 has spin 1
and magnetic moment y; = —#8S,, whereas particle 2 has spin % and zero magnetic moment.

(a) |6 points| What are the energy levels of this system and the degree of degeneracy of
the levels?

(b) [8 points| Write down the energy eigenstates corresponding to the different energy
levels in part (a), as linear superpositions of products of single-particle spin states.

Now consider what happens when the system is in a magnetic field of strength B.

AR? ?

(c) [4 points| What are the approximate energy eigenstates and eigenvalues if B > <=

(d) |7 points| Sketch the approximate energy eigenvalues as functions of 0 < B < %7
and label the appropriate states. Do not neglect the spin-spin interaction term from
parts (a) and (b).

Possibly useful information: Ji|j,m) = /i(j +1) —m(m £ 1)|j,m £ 1)
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Problem I1.5

The notion of negative absolute temperature is unusual but it can occur in, for example,
quantum spin systems. To see this, consider a quantum system of N noninteracting magnetic
dipoles each with spin 1/2, having a magnetic moment up, placed in a magnetic field B.
Assume a canonical ensemble description of this spin system with a temperature T' = 1/(k(3),
where k is Boltzmann’s constant.

(a) |3 points| Write down the energy € of this two-level system in terms of pp and B (the
magnitude of the magnetic field). Determine the partition function Zy in terms of Je.

(b) [9 points| Calculate the free energy F, the entropy S, and the internal energy U of
this system as a function of N and (.

A schematic plot of s = % versus u = % is provided in the figure below to aid you in

answering the following questions:
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(c) [4 points| What is the temperature T of the magnetic system in terms of quantities
you obtained in part (b)? Indicate in the figure: (i) the places where T' = 0, (ii) the
region where negative temperature 7' < 0 appears, (i) indicate with one arrow on
each branch the direction of increasing T, and (iv) what is the temperature at the
global maximum of that curve?

(d) [6 points| Plot the temperature parameter § = kT /e on the vertical axis versus u
(from —1 to +1) on the horizontal axis. () place an arrow along the curves indicating
the directions of decreasing temperature. (i) Explain what energy state the system is
in at 7' = 0. (71) If a system of this nature at 7' = —300K somehow interacts with an
identical system at T'= 300K, what is the final equilibrium temperature?

(e) [3 points| Name two necessary conditions for a system to manifest negative tempera-
ture.
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