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Problem II.1

(a) [6 points] Consider a one-dimensional simple harmonic oscillator: a particle with mass
m bound to a quadratic potential V = 1

2
kx2. Show by explicit calculation that

〈un| 1
2m
p2|un〉 = 〈un|12kx

2|un〉
holds for the eigenstates |un〉, which are normalized in the usual way.

(b) [6 points] Write down the Hamiltonian for a system in which there are two non-
identical particles (of mass m1 and m2) moving in one dimension and interacting via
a quadratic potential V = 1

2
k(x2 − x1)

2, where x1 is the position of the �rst particle
and x2 is the position of the second particle. Find the energy of the ground state and
its wavefunction in coordinate space.

(c) [7 points] Explain how the energy and wavefunction of the ground state would be
modi�ed if the system in part (b) was composed of two identical spin 1

2
particles.

(d) [6 points] Now add a spin-spin interaction between the identical spin 1
2
particles given

by α(x2 − x1)
4σ1 ·σ2, where α is a small positive constant and σ = σxx̂+ σyŷ + σzẑ.

Using perturbation theory, �nd the energy of the ground state to �rst order in α.

Possibly useful information:
∫∞
−∞ y

4e−y
2
dx = 3

√
π/4.

a† =
√

mω
2~ (x− ip

mω
)

a =
√

mω
2~ (x+ ip

mω
)
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Problem II.2

Consider a linear triatomic molecule with ions constrained to move only along the axis of
the molecule (which can be taken as the x-axis). The molecule consists of two ions of mass
m and charge −e that are symmetrically located at either side of an ion of mass M = 2m
and charge +2e at equilibrium. The complicated forces between the ions are approximated
by two springs with spring constant k, and equilibrium length b, as shown in the �gure.

m,−e m,−eM,+2ek k

b b

(a) [2 points] Write down the Hamiltonian for this system of three coupled masses.

(b) [4 points] Show that the following transformation

x1 =
1

2
(QB −

√
2QA)

x2 = −1

2
QB

x3 =
1

2
(QB +

√
2QA)

simpli�es both the kinetic and the potential energies and eliminates the center-of-mass
motion.

(c) [8 points] QA and QB are normal-mode coordinates describing the internal vibrations
of the molecule. These modes satisfy

Qj(t) = Qj(0)eiωjt, j = (A,B).

Describe the motion of the ions in each of the normal modes. Determine the oscillation
frequencies ωj and the electric dipole moments Dj for the two internal modes.

The molecule is actually a quantum mechanical system. Initially it is in its ground state;
it is then subjected to a weak uniform electric �eld Ex(t) = E0(ω) cos(ωt). The perturbing
interaction between its dipole moment and the electric �eld is H ′ = −DEx, where D is
the electric dipole moment and Ex is the electric �eld component along the molecule. The
transition probabilities Pj(ω, t) for excitation of states with one quantum either in mode A
or in mode B is

P0j(ω, t) =
| V0j |2

~2

sin2[(ω0j − ω)t/2]

(ω0j − ω)2
,

where | V0j |2 is the matrix element of the perturbing Hamiltonian, and in this case is
| V0j |2=| DjE0(ω) |2 for mode j of frequency ω0j.
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(d) [3 points] Use the equation above to obtain expressions for P0A(ω, t) and P0B(ω, t).

(e) [8 points] Determine the transition rates Rj = d
dt

∫
dωP0j(ω, t), for a uniform inco-

herent beam of radiation propagating in the z-direction and polarized along x, whose
intensity per frequency interval is given by J(ω) = 1

2
cε0| E0(ω) |2, where c is the speed

of light in vacuum and ε0 is the permittivity of free space. Assume that J(ω) depends
weakly on frequency.

Possibly useful information:
∞∫
−∞

sin2x
x2 dx = π.
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Problem II.3

Consider di�raction of quantum particles of wavevector ki on a system of N identical scat-
terers located a distance b apart along the direction of incidence ẑ, as shown in the �gure
below.

ki b
(N − 1)b

ẑ

kf θ

Each individual scatterer is characterized by a potential U0(r) and the corresponding Born
amplitude of scattering f0(θ), which is assumed to be a smooth, featureless function.

(a) [3 points] First consider the case of only one scatterer (N = 1). In the Born ap-
proximation, express the amplitude f0(θ) and the di�erential cross section dσ0/dΩ of
scattering in terms of U0(r) and k.

(b) [6 points] Now consider N scatterers. The total potential is

U(r) =
N−1∑
n=0

U0(|r − nbẑ|),

where ẑ is the unit vector along the z axis.

In the Born approximation, calculate the amplitude f(θ) and the di�erential cross
section dσ/dΩ of scattering in terms of f0(θ), k, b, and N .

Explore the answer obtained in Part (b) for various values of kb as follows:

(c) [4 points] What are f(θ) and dσ/dΩ in the limit Nbk � 1? Interpret the result.

In the case of kb ≥ 1 and N � 1, answer the following questions and give geometrical
interpretations of your results:

(d) [4 points] Sketch dσ/dΩ as a function of θ. Calculate the angles θn at which dσ/dΩ
has strong maxima.

(e) [4 points] What is the total number of strong maxima for a given value of kb?

(f) [4 points] Discuss how the height and the width of a strong maximum depend on
N � 1. The width ∆θn = 2δθn is determined by the angles θn ± δθn where dσ/dΩ
vanishes.

Useful formula:
N−1∑
n=0

an =
aN − 1

a− 1
.
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Problem II.4

Two particles interact via a spin-spin Hamiltonian term AS1 · S2, where A is a positive
constant and S1,2 are the spin angular momenta of the two particles. Particle 1 has spin 1
and magnetic moment µ1 = −µB

~ S1, whereas particle 2 has spin
1
2
and zero magnetic moment.

(a) [6 points] What are the energy levels of this system and the degree of degeneracy of
the levels?

(b) [8 points] Write down the energy eigenstates corresponding to the di�erent energy
levels in part (a), as linear superpositions of products of single-particle spin states.

Now consider what happens when the system is in a magnetic �eld of strength B.

(c) [4 points] What are the approximate energy eigenstates and eigenvalues if B � A~2

µB
?

(d) [7 points] Sketch the approximate energy eigenvalues as functions of 0 < B > A~2

µB
,

and label the appropriate states. Do not neglect the spin-spin interaction term from
parts (a) and (b).

Possibly useful information: J±|j,m〉 =
√
j(j + 1)−m(m± 1)|j,m± 1〉
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Problem II.5

The notion of negative absolute temperature is unusual but it can occur in, for example,
quantum spin systems. To see this, consider a quantum system of N noninteracting magnetic
dipoles each with spin 1/2, having a magnetic moment µB, placed in a magnetic �eld B.
Assume a canonical ensemble description of this spin system with a temperature T = 1/(kβ),
where k is Boltzmann's constant.

(a) [3 points] Write down the energy ε of this two-level system in terms of µB and B (the
magnitude of the magnetic �eld). Determine the partition function ZN in terms of βε.

(b) [9 points] Calculate the free energy F , the entropy S, and the internal energy U of
this system as a function of N and β.

A schematic plot of s ≡ S
Nk

versus u ≡ U
Nε

is provided in the �gure below to aid you in
answering the following questions:

−1 −0.5 0 0.5 1
0

0.5

ln(2)

u

s

(c) [4 points] What is the temperature T of the magnetic system in terms of quantities
you obtained in part (b)? Indicate in the �gure: (i) the places where T = 0, (ii) the
region where negative temperature T < 0 appears, (iii) indicate with one arrow on
each branch the direction of increasing T , and (iv) what is the temperature at the
global maximum of that curve?

(d) [6 points] Plot the temperature parameter θ = kT/ε on the vertical axis versus u
(from −1 to +1) on the horizontal axis. (i) place an arrow along the curves indicating
the directions of decreasing temperature. (ii) Explain what energy state the system is
in at T = 0. (iii) If a system of this nature at T = −300K somehow interacts with an
identical system at T = 300K, what is the �nal equilibrium temperature?

(e) [3 points] Name two necessary conditions for a system to manifest negative tempera-
ture.
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