UNIVERSITY OF MARYLAND
Department of Physics
College Park, Maryland

Ph.D. PHYSICS QUALIFYING EXAMINATION - PART II

August 27, 2010 9am.-1pm.

Do any four problems. Each problem is worth 25 points.
Put all answers on your answer sheets.
Be sure your Qualifier ID Number is at the top right corner of each

sheet and turn in solutions to four problems only. If five solutions
are turned in we will grade #1 -#4.
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Problem II1.1

Consider a quantum particle of mass m confined within a one-dimensional infinite square-
well potential in the presence of an additional repulsive delta-potential in the middle of the
well:

[ Bé(z), if —a<z<a;
, Ulz) = { oo,  if |z] > a, (1)
where d(z) is the Dirac é-function and B > 0. The potential U(z) is illustrated below.
U(x)
U=2c U=x
-2 0 +a i

(a) [2 points] Consider the reflection operator P, whose action on an arbitrary function
¥(x) is defined as follows A
Pi(z) = ¢(—x).
Determine the possible eigenvalues (called parity) of this operator.
(b) [3 points] Consider the stationary Schrédinger equation with the energy E correspond-

ing to the potential (1). Show that the following wave functions satisfy the Schrodinger
equation everywhere except, possibly, at the point x =0

Y-(z) = sin(k_z), (2)
Yy (2) = sin [k, (|z] - a)]. 3)

Determine a relationship between the parameters k1 and the energy E.

Show that the wave functions (2) and (3) have well-defined parities and determine the
values of their parities.

(c) [4 points] For the potential (1), what boundary conditions does the wave function
satisfy at £ = *a?
Prove that the wave function satisfies the following matching condition at z = 0

W(+0) —w/(-0) = TPy (0) (@

where the left-hand side represents the difference of the derivatives ¢/ = dy/dx taken
in the limit  — 0 from the positive side (z > 0) and from the negative side (z < 0).
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(d) [3 point] Apply the boundary conditions formulated above to the odd-parity wave
function ¢_(z) from Eq. (2) and determine the permitted values of k_ and the corre-
sponding eigenenergies E_. Are the eigenenergies E_ affected by the presence (8 0)
or absence (8 = 0) of the -function potential in the middle of the well?

(¢) [4 points] Prove that the even-parity wave function 1, (z) from Eq. (3) is an eigenfunc-
tion of the Schrodinger equation if the wave vector k, satisfies the following equation:

tan(k,a) = —%, where ¢ = n;;'B. (5)

From Eqgs. (1) and (5), determine the dimensionality of 8 and &.

(f) [3 points] Examine Eq. (5) in the limit £ — 0, which corresponds to a vanishingly
weak d-function potential. Determine the permitted values of k.. and the corresponding
energy levels E, in this case. Compare your result with the well-known spectrum of
an infinite potential well without J-function potential (8 = 0).

(g) [3 points] Now consider the limit of a very strong d-function potential: £ — oo.
Determine the permitted values of k; and the corresponding energy levels E, from
Eq. (5) in this limit. Compare with the spectrum of the odd-parity eigenstates found
in Part (d).

(h) [3 points] Using the results obtained in Parts (d)(g), make a qualitative plot showing
how the energies of the four lowest states depend on the parameter & when it changes
from 0 to co. Indicate the limiting values of the energies at £ = 0 and £ = oo on the
plot. Give a qualitative description of the energy spectrum at E> 1.

Also indicate the parities of the four lowest states. What is the parity of the ground
state?
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Problem I1.2

A rubidium atom has an excited state |a) of the same parity as the ground state |g), as shown
in Figure 1. Because |a) and |g) have the same parity, the direct transition between these
states is forbidden. However, the state |a) can decay to an opposite-parity state |b), which
in turn can decay to the ground state |g). Suppose the states |a) and |b) are not populated
initially. Then, at time ¢ = o, the state |a) is instantly populated as p,(tp). Suppose also
that an experimental apparatus can detect emission of photons at the wavelength of the
|b) = |g) transition, but is insensitive to the photons at the wavelength of the |a) — |b)
transition.

Unobserveddecay ______ |a> (5D,,)
5270 nm —rs ¢ *
—E [b> (6P,,,)

/
/

Observed decay '
420.2 nm——s  /

/
/
/

19> (5S,p,)

/

Figure 1: Energy levels and transitions involved in a cascade decay. The levels in parenthesis
correspond to those relevant for the measurement in Rb.

(a) [10 points] Derive and solve equations for the time-dependent populations p,(t) and
p(t) of the states |a) and |b), given the lifetimes 7, and 7, of these states and the initial
population p,(t5). (The population p;(t) of a state 4 is the number of atoms in this
state in an ensemble of atoms at the time ¢.)

From these solutions, determine the time dependence of the observed fluorescence
signal, which is defined as the number of the |b) — |¢) transitions per unit time.

(b) [5 points] Obtain the limiting forms of the expression for the time-dependent fluores-
cence signal for the cases: 7, > 7, 7, € T, and 7, = 7,

(c) [10 points] Figure 2 shows time dependence of the actual fluorescence signal measured
at the wavelength A = 420 nm in an experiment with atomic rubidium. The state |a)
was populated by a short pulse that had a turn-off of less than 30 ns. The intermediate
state |b) has the lifetime 7, = 113 ns. The decay |a) — |b) at A = 5,270 nm is invisible
to the detector, so the plot shows only the decay |b) — |g) at A = 420 nm.

Use the graph to estimate the lifetime 7, of the upper |a) state.

Hint: The lifetime 7, of the |a) state is longer than the lifetime 7, of the |b) state in Rb.
Also, In(10) = 2.3.
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IT.2 (Continued)
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Figure 2: Observed fluorescence (the number of transitions per unit time) as a function of
time for the |b) — |g) transition in Rb. Notice logarithmic scale on the vertical axis.
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Problem I1.3

This problem examines scattering in the high-energy limit, where the wavelength of the
scattered particle is small, and quasiclassical approximation (or geometrical optics) is valid.

(a) [5 points] Consider a particle of mass m moving in the z direction. The incident

(b)

(c)

(d)

wave function is (x, y, z) = €'**, and the energy of the particle is E = A%k?/2m. The
particle scatters on some three-dimensional potential V (r).

When the particle’s momentum £k is large, one can treat the particle’s motion as
one-dimensional along the z direction at the fixed coordinates x and y. In this ap-
proximation, consider the one-dimensional Schrédinger equation with the potential
V(x,y, z) and show that the wave function of the particle can be approximated by

Y(x,y, z) = exp (% /; dz'\/2m[E — V(z,y, z’)]) . (1)

[5 points] Assuming that E > V, expand the integral in Eq. (1) to the first order in
V and show that the wave function has the form

Ye(r) = *Texp (—J—h /_ i V(z,y,2) dz’) : (2)

where v is the particle’s velocity, related to the energy by E = mv?/2, and k = k3 is
the particle’s wave vector along the z axis.

The wave function (2) differs from the wave function of a free particle by the extra
phase factor. This extra phase is called the eikonal phase, which depends on the
transverse coordinate b = (x,y).

[5 points] The scattering amplitude f(k, k') from the state with the initial wave vector
k to the state with the final wave vector k' can be calculated as

/ B (r) V(r) e . 3)

m
2mwh?2

f(k’k,) =

(You do not need to derive Eq. (3).) By substituting Eq. (2) into Eq. (3) and taking
the integral over z in Eq. (3), show that the scattering amplitude is

k i [ :
kK)=— - V(b,2)d2 | — 1| e ¢?p.
$0K) =5 [ o (—55 [ vorae) -1]emran
Here g = k' — k is the momentum transfer, which is almost parallel to the b plane, so
that ¢, =~ 0. Eq. (4) gives the eikonal approximation for the scattering amplitude.
[5 points] Let us now consider the following potential:

V(r) = { ?,0 g (5)
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where Vo > 0, and 7 = |r| = /22 + y2 + 22.
Using the eikonal approximation (4) and the optical theorem, calculate the total cross

section o for the potential (5). (You can leave the result as an integral over b).

As a reminder, the optical theorem says that
4T
0= —-Imf(q=0), (6)

where the right-hand side contains the imaginary part of the forward scattering am-
plitude.

(e) [5 points] In the very high-energy limit, where the phase in the first term of Eq. (4) is
small, expand Eq. (4) to the first order in V and show that the eikonal approximation
reduces to the Born approximation. _

Formulate the condition of applicability of the Born approximation in the very high-
energy limit for the potential (5) in terms of V,, a, and v.
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Problem 11.4

This problem concerns properties of the states of quantum mechanical systems with a given,
fixed value 7 of the quantum number of the angular momentum operator J. Such a system
will be referred to as a “spin-j system”. (For example, the system could be a single particle,
or an atom or molecule, etc. Other quantum numbers characterizing the system are not
relevant for this problem.)

The questions first refer to what is implied, in terms of angular momentum, if such a
system is in a spherically symmetric state. Then you are asked to consider states that have
vanishing expectation value of the angular momentum vector. As you will see, these are
distinct properties in general.

In your answers to this problem, all states should be normalized. Notation and basic
facts about angular momientum are summarized under “possibly useful information” below.
You may adopt units with A = 1.

(a) [5 points] Among the systems of spin 7, for general j, what systems admit spherically
symmetric states? Display all such states in the basis {|j,m)}.

(b) [10 points] Now consider a system composed of two (distinguishable) components,
both with the same spin j. Find the spherically symmetric state of this system, ex-
pressed in two ways,

(i) using the eigenbasis of the composite system’s total angular momentum, |jtot, Mot ),

(ii) using products of the individual eigenstates, |j, m;)|j, m2): Write the wave function
of the system in the form

I"p) = Z le,mzlj’ ml)lja m2>

m1,m2
and determine the coefficients Cy,; m,.

(iii) Discuss the existence or non-existence of a spherically symmetric state if the two
individual spins are unequal, j; # J,.

(c) [5 points] Return to the case of a single spin-j system and consider expectation values.
For a spin-1/2 system, find all the states (if any) with vanishing expectation value of
all components of the vector (J).

(d) [5 points] For contrast, consider a spin-1 system. Find at least one state with vanishing
expectation value of the vector (J), in the basis |1, m): Write the wave function of this
state as |¢) = Y Cn|1l,m) and determine the coefficients C,,.

Is this state spherically symmetric? How can you obtain other such (J) = 0 states
from this one?

Possibly useful information: The eigenstates |j, m) of J2 = J - J and J, for a spin-j system
satisfy

Pljym) =3+ DREG,m),  Jlj,m) = mhl|j,m)
and

Jeljm) = /ji(G+1) —=m(m=£1) |jm+1)
where Jy = J, £1iJ,.
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Problem II1.5

Neutrinos can be observed in three different states |v.), |v,.), and |v,), which are called
the flavor states. Recent experiments and theories indicate that these states are different
from the energy eigenstates of neutrinos, which are denoted as |1,), |v»), and |vs) and have
different non-zero masses. For simplicity, we consider only the pairs [v), |vr) and |1s), |vs)
of the neutrino states. These pairs of states can be expressed as linear superpositions of each

other, as follows
|vu) \ _ [ cos® —sind |va) (1)
lvr) /7 \ sin@®  cosé lvs) )
where the parameter 6 is called the mixing angle. If neutrinos are initially in the state |vs)
or |v3) at the time ¢ = 0, then their wave function at a time ¢ can be obtained as follows

|V2) N e—iEzt/hIVZ)’ (2)
lug) — e Est/R i),

where E, and Ej are the energies of the states |14) and |u3), respectively. In a typical
experiment, a beam of neutrinos is initially produced in the pure |v,) state with momentum
p. At alater time, neutrinos are detected in the state |v;.). This phenomenon is called flavor
oscillation. '

(a) [5 points] Using Eq. (1), explicitly write the states |v,) and |v,) as superpositions of
the states |v2) and |v3).

(b) [5 points] If a neutrino is created at ¢ = 0 in the pure |v,) state, obtain its wave
function |1(t)) at a later time ¢ in the basis of |,) and |vs).

(c) [10 points] Suppose the state of the neutrino is measured at the time ¢. Using [(¢))
found in Part (b), calculate the probability amplitude and the probability of finding
the neutrino in the state |v;).

What is the maximal probability of finding the neutrino in the state |vr) for any time
t?

(d) [5 points] Using your answer to Part (c), find the minimum distance L required to
maximize the probability of finding neutrinos in the state |v,). Express your answer
in terms of the difference in the masses m, and ms of the states |15) and |vs). Assume
that the momentum p is fixed and that the masses are very small, so that myc, mge < i)
and the speed of neutrinos is very close to the speed of light c.

Possibly useful information:
sin 2« = 2sin (cos «



