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Problem II.1

A deuteron consists of a proton and a neutron forming a weakly bound system with no excited
bound states. The nuclear interaction between the proton and neutron can be approximated
by a spherically-symmetrical square-well potential V (r):

V (r) =

{
−V0, r ≤ a

0, r > a
(1)

The proton and neutron can be treated as non-relativistic particles in this problem.

(a) [5 points] Write down the radial Schrödinger equation for the radial wavefunction R(r)
describing the relative motion of the proton and neutron. Then make the substitution
u(r) = rR(r) and write down the Schrödinger equation for u(r) in the ` = 0 state.

(b) [12 points] Applying the appropriate boundary conditions, find expressions for the
wavefunction u(r) of a bound state and the condition that determines the energies of
bound states for the potential given by Eq. (1).

(c) [6 points] Determine the minimum value of V0 for which just one bound state exists
with a very small binding energy |E| � V0.

(d) [2 points] The range of the nuclear force is estimated to be a ≈ 2 fermi in Eq. (1).
Assuming the weak binding condition |E| � V0, numerically estimate the potential
depth V0 in MeV for the deuteron.

Useful constants:
1 fermi = 10−15 m,:
~ = 197 MeV fermi/c = 1.0546× 10−37 Js,
Mass of Proton: 938.3 MeV/c2 = 1.6726× 10−27 kg,
Mass of Neutron: 939.6 MeV/c2 = 1.6749× 10−27 kg.
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Problem II.2

For a one-dimensional harmonic oscillator of mass m and frequency ω, the two lowest energy
eigenstates have the energies ~ω/2 and 3~ω/2, and their wavefunctions are

ψ0 =
(mω
π~

)1/4
e−

mω
2~ x

2

and ψ1 =
(mω
π~

)1/4√2mω

~
x e−

mω
2~ x

2

.

(a) [5 points] Consider the harmonic oscillator potential V0 = 1
2
mω2(x2 + y2) in two

dimensions. Write down the Hamiltonian H0 and find the energies and wavefunctions
of the ground and first excited states. What are the degeneracies of these states?

(b) [8 points] Suppose a weak perturbation V1 = λxy is introduced, so that the potential
changes to V = V0 + V1. Using a perturbation theory (degenerate if appropriate),
compute the first-order change in the energies for the states found in Part (a).

(c) [7 points] Obtain the exact energy eigenvalues for the total Hamiltonian with the full
potential V = V0 + V1. Verify that your exact result agrees with the result in Part (b)
to the first order in λ.

Hint: Consider the substitutions

x′ =
x+ y√

2
, y′ =

x− y√
2
, and p′x =

px + py√
2

, p′y =
px − py√

2
.

(d) [5 points] Compare the Hamiltonians in Parts (a) and (c). Comment in a few sentences
on the symmetry and degeneracy of the systems they describe.

Gaussian integrals :

∫ ∞
−∞

e−s
2

ds =
√
π,

∫ ∞
−∞

s2e−s
2

ds =

√
π

2
.
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Problem II.3

Consider s-wave scattering of a particle of mass m on the delta-function spherical-shell
potential of radius a and strength U > 0,

V (r) = U δ(r − a). (1)

(a) [7 points] Write down the ` = 0 radial Schrödinger equation for the function u(r) =
rψ(r) and an energy E = ~2k2/2m.

Formulate the boundary conditions on u and du/dr at r = 0 and at r = a, using the
abbreviation γ = (2m/~2)U .

Show that u(r) has the following form, where δ0 is called the scattering phase:

u(r) =

{
A sin(kr), r ≤ a,
B sin(kr + δ0), r ≥ a.

(2)

Applying the boundary conditions to the wavefunction (2), derive a transcendental
equation for δ0.

The scattering phase δ0 is related to the cross-section of scattering σ by

σ =
4π

k2
sin2 δ0. (3)

In the rest of the problem, assume a very strong scattering potential, so that γ � k, 1/a.

(b) [6 points] From your results in Part (a), obtain the phase shift δ0 in the case where
tan(ka) is not close to zero. Show that δ0 in this case is the same as for an impenetrable,
hard-sphere scattering potential of radius a.

Find the cross-section of scattering σ in the low-energy limit ka � 1. Compare your
result with scattering cross-section of classical particles on a hard sphere of radius a.

(c) [6 points] When tan(ka) is close to zero, show that there are resonances in scattering
for certain values of k. Calculate δ0 and σ for a resonance and show that σ is maximal
with respect to k.

(d) [6 points] Calculate the energies En of the bound states with ` = 0 inside the spherical-
shell potential in Eq. (1) with an infinite impenetrable wall U = ∞. Compare these
energies En with the energies of resonant scattering in Part (c). Explain the connection.
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Problem II.4

The Nobel Prize in Physics 2010 was awarded for the discovery of graphene, a single-layer
hexagonal lattice of carbon atoms shown in the figure below. It has two sub-lattices A and
B shown by open and closed circles, so the electron wavefunctions are described by two-
component spinors ψ = (ψA, ψB). Near the Fermi energy, the Hamiltonian for the electrons
in graphene can be approximated as

H = v (σ · p),

where v is the Fermi velocity, p = (px, py) = −i~∇ is the two-dimensional momentum
operator, and σ = (σx, σy) are the Pauli matrices operating on the spinor wavefunctions.
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(a) [5 points] Find the eigenenergiesE and spinor eigenfunctions ψ(x, y) of the Schrödinger
equation for the electron in graphene: Hψ = Eψ. Show that the eigenenergies E(p)
are linear in the magnitude of the electron momentum p.

How does the relative phase between the spinor components ψA and ψB depend on the
direction of p?

(b) [5 points] Suppose the electron encounters a (sub-lattice independent) arbitrary po-
tential V (x)σ0, where σ0 is the 2× 2 unit matrix, with the asymptotic limits

V (x) =

{
0 at x→ −∞,
V0 at x→ +∞,

V0 > 0.

Assuming py = 0, write down (but do not solve) the coupled Schrödinger equations for
the spinor components of ψ(x) in the presence of V (x).

(c) [5 points] Now recognize that a unitary transformation of the spinor wavefunction
can be performed to transform the Pauli matrix σx into σz, thus diagonalizing the
Hamiltonian. Such a transformation can be accomplished with the operator

R = ei(σ·n)χ/2 = σ0 cos
(χ

2

)
+ i(n · σ) sin

(χ
2

)
,

where n a unit vector for the axis of rotation (n = 1), and χ is a rotation angle.

What choice of n and χ achieves the desired transformation? Write down the trans-
formed Hamiltonian and Schrödinger equation, but do not solve.
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(d) [5 points] Finally, the wavefunction can be modified by a phase factor and written as

ψ(x) = e−i(σz/v~)
∫ x V (x′)dx′ ψ̃(x).

Obtain the Schrödinger equation for the modified spinor wavefunction ψ̃(x) and show
that it does not contain V (x), i.e. corresponds to a free particle.

(e) [5 points] Using the result from Part (d), state the reflection and transmission coef-
ficients of the potential V (x). Provide a physical explanation of the result in the case
0 < E < V0.

This effect is known as the Klein paradox.

Useful information:

Pauli matrices σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, σ0 =

(
1 0
0 1

)
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Problem II.5

The neutrinos produced in weak interactions are flavor eigenstates denoted as |νµ〉 and |νe〉.
An experiment produces isotropically-distributed pure |νµ〉 (muon neutrinos). In a year, a
small-size detector observes 40,000 muon neutrinos at a distance of 100 meters from the
source and 300 muon neutrinos at 1000 meters from the source.

(a) [3 points] Based on the data for 100 meters, what number of muon neutrinos would you
expect at 1000 meters, if the muon neutrinos are conserved and emitted isotropically?

Could the difference between the expected and observed numbers of neutrinos be due
to statistical fluctuations in the number of observations? Discuss, in terms of standard
deviation, the strength of the evidence that muon neutrinos “disappear” (i.e. are not
conserved) between 100 and 1000 meters.

Neutrinos of one flavor can disappear because flavor eigenstates can oscillate between each
other as they propagate through space. A flavor eigenstate does not have a well-defined
mass; it is a superposition of eigenstates |ν1〉 and |ν2〉 that have definite masses m1 and
m2. In the two-dimensional Hilbert space of mass eigenstates, the flavor eigenstates make a
constant angle θ (called the mixing angle) with the mass eigenstates, as shown in Fig. 1:(

|νe〉
|νµ〉

)
=

(
cos θ sin θ
− sin θ cos θ

)(
|ν1〉
|ν2〉

)
.

-
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Figure 1: Neutrino eigenstates represented as rotation between the flavor and mass eigen-
states.

Here we study neutrinos with a well-defined momentum p, which is conserved. The two mass
eigenstates have energies E1(p) and E2(p), whereas the two flavor eigenstates of momentum
p do not have well-defined energies.

(b) [8 points] Show that the state that is a pure muon neutrino at t = 0, |ψ(0)〉 = |νµ〉
evolves according to

|ψ(t)〉 = − sin θ|ν1〉e−iE1t + cos θ|ν2〉e−iE2t

Hence calculate the probability P (νµ→ νe) of a transition from |νµ〉 to |νe〉 as a function
of time t, in terms of θ and E1,2.
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(c) [8 points] Assuming that m1, m2 � p/c, find the lowest-order contribution to the
energies E1,2 due to non-zero masses of neutrinos. Substitute the result into the formula
for P (νµ→ νe) obtained in Part (b). Show that P (νµ→ νe) oscillates as function of
the neutrino’s travel distance L = ct according to

P (νµ→ νe) = sin2 2θ sin2

(
∆m2L

4Eν

)
,

where ∆m2 = m2
1 −m2

2, and Eν is an average neutrino energy.
Helpful Hint: (1− cos 2θ)/2 = sin2 θ

(d) [4 points] Consider the data from a neutrino oscillation experiment shown in Fig. 2,
where the survival probability, 1−P (νµ→ νe), is plotted vs L/Eν . Assuming the error
bars represent 1-sigma errors, roughly estimate by eye the χ2 as well as the number of
degrees of freedom between the data and the two hypotheses: i) the best-fit oscillation
hypothesis shown as the curve for two fit parameters, ii) the best-fit flat distribution
hypothesis shown as the horizontal dashed line. Discuss what this implies for the two
hypotheses.

(e) [2 points] For the better hypothesis estimate ∆m2c4 in eV2. (Notice that the hori-
zontal axis does not start from zero.)

Useful data: hc = 1.24× 10−6 eV m.

Figure 2: Data from a neutrino oscillation experiment.

7

jhessing
Typewritten Text
II.5 (Continued)

jhessing
Typewritten Text
Spring 2013

jhessing
Typewritten Text


	physic q cover sheet part II Sp 2013
	Qualifier Exam Sp13 Part II for Web



