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  Department of Physics 

      College Park, Maryland 

 Ph.D. PHYSICS QUALIFYING EXAMINATION - PART I 

  August 29th, 2013  9 a.m. - 1 p.m. 

Do any four problems.  Each problem is worth 25 points. 

Put all answers on your answer sheets. 

Be sure your Qualifier ID Number is at the top right corner of each 
sheet and turn in solutions to four problems only.  If five solutions  
are turned in we will grade # 1 - # 4.     



Problem I.1

Consider a particle of mass m confined to a two-dimensional plane with polar coordinates
(r, φ), in the presence of an upside-down harmonic oscillator potential V (r) = −1

2
κr2.

(a) [5 points] Identify two conserved quantities for the particle’s motion, and write ex-
pressions for them.

(b) [5 points] Now assume the particle has an electric charge q, and there is a uniform
and time-independent magnetic field of strength B, normal to the plane of motion.
Write the Lagrangian L and the energy E for the particle as functions of (r, ṙ, φ, φ̇).
[A convenient vector potential for the magnetic field in this problem is A = (Br/2)φ̂.]

(c) [5 points] Identify the conserved quantities for the motion, and write expressions for
them.

Find the effective potential Veff(r) for the radial motion in the presence of the magnetic
field, for any fixed value of the conserved variable pφ conjugate to the angle φ.

Sketch Veff(r) in the limit of small and of large B.

(d) [5 points] Show that the motion is stable (i.e. the particle remains for all time within
a fixed distance from the origin) provided |B| is larger than some minimum value B0,
and find that value.

(e) [5 points] Find the particle position (r, φ) as a function of time t for all trajectories
that pass through the origin at time t = 0, assuming

(i) |B| < B0,
(ii) |B| = B0, and
(iii) |B| > B0.
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Problem I.2

An infinite conducting, current-carrying plate lies in the
x-y plane (see Figure). Suppose there is a steady cur-
rent in the plate in the +x direction. Let the current
per unit y-length be K.

(a) [3 points] Using Ampère’s Law,
∮
B·dl = µ0Ienc,

find the steady magnetic field By in terms of K
on either side of the plate. Assume that the fields
associated with the current are appropriately re-
flection symmetric about the plate. Make a sketch
of B for all z, using the Figure as reference.
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Now suppose instead that there is time dependence: the current and fields vanish for t < 0,
and K is turned on suddenly at t = 0. That is, K = K0Θ(t) where Θ is the step function,
Θ(t) =

{
0 t<0
1 t>0

. Consider now a snapshot of the system at some time t > 0:

(b) [4 points] Using only qualitative reasoning, in particular using causality, make a sketch
of the snapshot of B in the Figure at time t > 0. Mark clearly any characteristic
lengths in your sketch. (Note that the plate is of infinite extent; thus, the problem is
still one-dimensional in z, but the B field may have structure in that direction.)

(c) [4 points] Do you think the total energy stored in the electromagnetic fields increases
or decreases with time? Based on this, consider qualitatively the Poynting flux and
deduce if there should be any associated electric fields E. If so, include E in your
sketch, with the proper signs.

From Maxwell equations, the vector potential A(z, t) can be shown to satisfy the wave
equation (

∂2
z −

1

c2
∂2
t

)
A = −µ0j,

where the current density is
j = Kδ(z)Θ(t) x̂.

for our problem above. The solution for A can be constructed from a Green function,
G(z, z′, t, t′), according to

A(z, t) = −µ0

∫ ∞
−∞

dt′
∫ ∞
−∞

dz′G(z, z′, t, t′) j(z′, t′).

The Green function, in turn, for outgoing wave boundary conditions (i.e., causality), can be
found to be

G =
c

2
Θ(tr − t′) where tr = t− |z − z

′|
c

.

(d) [5 points] Find the non-zero component of the vector potential A(z, t) for all (z, t).
Leave your answer in terms of an integral over t′.
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(e) [3 points] The electromagnetic fields can be calculated from A(z, t) according to
the relations given below. (There is no scalar potential ϕ in this problem, so ignore
it.) Calculate By(z, t) [perform any differentiations by commuting across the integral].
Describe the waveform in z for given t clearly, and compare with your snapshot above.

Hint: Consider separately the cases tr < 0 and tr > 0.

(f) [3 points] Likewise, calculate E(z, t). Compare with your snapshot above.

(g) [3 points] For z > 0, calculate the energy per unit plate area stored in the electromag-
netic fields at time t. Calculate the Poynting energy flux per unit plate area. Confirm
that the power input into the electromagnetic energy equals the Poynting flux.

(Expressions for the electromagnetic energy density, u, and Poynting flux, S, are given
below.)

Useful equations

Θ[f ] =

{
0 f < 0

1 f > 0

d

dt
Θ[f(t)] = δ(f)

df

dt

B = ∇×A, E = −∇ϕ− ∂A

∂t

u =
1

2

(
ε0E

2 +
B2

µ0

)
, S =

E ×B

µ0
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Problem I.3

Equilibrium is a central concept in Statistical Physics.

(a) [6 points] Give a definition of equilibrium for

(a) an isolated system

(b) a pair of interacting systems

(b) [6 points]

(a) For a closed isolated system, give two examples of experimentally measurable
thermodynamic variables, their definitions, and what equilibrium implies about
them.

(b) For a system that can exchange particles, give one more example of an experi-
mentally measurable thermodynamic variable and its definition.

(c) [7 points] A colleague gives you a crystalline solid sample and asks you to examine
its electronic properties (e.g. voltage V versus current I).

(a) What are the thermodynamic variables and potentials that are relevant to your
measurement?

(b) As an experimentalist, why should you concern yourself with the sample equilib-
rium?

(d) [6 points] A laboratory is never in equilibrium, in the sense of an isolated system.
Give four examples of likely nonequilibrium conditions for a scientific laboratory in
this building (or another campus building if you prefer).
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Problem I.4

A magnetic spectrometer can be used to determine properties of charged particles. In
this problem we assume that the particle trajectories outside of the magnet are measured
accurately by certain detectors (such as silicon pixel or strip detectors, or drift chambers).

The Figure below (not to scale) shows a particle traveling through such a magnet. In the
right-handed coordinate system indicated, the particle is traveling in the x-y plane, with no
z component to its velocity. The magnet has a magnetic field that is approximated to be
strictly constant in strength and direction inside the magnet, and strictly zero outside the
magnet (even though real magnets have “fringe fields” near their edges).

3.6
o

x

y

1.80 m

(a) [3 points] Suppose you observe that a particle enters the magnet parallel to the x axis
and is deflected in the −y direction by the time it exits, as shown in the figure. Is the
particle’s total energy (in the reference frame of the magnet) different after exiting the
magnet than it was before entering the magnet? Explain.

(b) [4 points] Show that the trajectory of the particle in the uniform field of the magnet
is a circular arc. Express the magnitude p of the particle’s momentum in terms of its
electric charge q, the magnetic field B = B0ẑ, and radius r of the trajectory, showing
that we can infer p from the observed r if we know q and B0.

Justify that your result holds for the momentum of relativistically moving particles

(c) [5 points] Suppose that the magnet shown in the figure above is 1.80 m long and
has a magnetic field strength B0 = 0.370 T, and we know that the particle has charge
e = 1.602× 10−19 C, and is deflected by an angle of 3.60◦. What is the momentum of
the particle?

Hint: the tesla (T) is the standard SI unit for magnetic field. Express your answer in
MeV/c units; note that 1 eV = 1.602× 10−19 J , so 1 MeV/c = 5.344× 10−22 kg ·m/s.

(d) [1 point] Another useful tool is a Cherenkov detector. A charged particle moving at
speed v through a medium with index of refraction n produces Cherenkov light in a
cone with a half-angle given by cos θ = c/nv.

Suppose the particle described above passes through a Cherenkov detector filled with
high-pressure gas giving n = 1.047, and the cone half-angle is measured to be θ = 11.6◦.
From this observation, what is the particle’s speed, expressed as a fraction of the speed
of light?
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(e) [4 points] Combining your answers from the previous parts, find the rest mass of the
particle in MeV/c2 units,

(f) [4 points] From the particle’s point of view, i.e. in its reference frame and using its
clock, how much time (in seconds) does it spend inside the magnet?

(g) [4 points] In the “coincident” inertial frame, which has the same velocity as that of
the particle’s initial, straight-line motion, the particle is initially motionless, of course.
As the particle enters the spectrometer’s field it still has v = 0 but is immediately
deflected sideways. In this coincident inertial frame, what force causes the deflection?
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Problem I.5
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The Figure shows a Michelson interferometer in which two coherent light waves, derived
from the same monochromatic source, are combined into one wave of intensity Iout. This
intensity is measured and processed into a signal S that is sensitive to small displacements
∆L of a movable mirror relative to some reference position. You will determine the optimum
reference configuration according to two different criteria, and explain any difference.

(a) [5 points] The electric fields at the detector from the two light waves are polarized
in the same way and have amplitudes Ef and Em from reflection by the fixed and
movable mirrors, respectively. There is a phase difference δ between the two waves.

Show that the dependence of the output intensity Iout(δ) of the Michelson interferom-
eter on the phase difference δ has the form

Iout(δ) = A+B cos2 δ

2
(1)

where A and B are positive constants. Find A and B in terms of Ef and Em.

(b) [2 points] Express the phase difference δ caused by motion of the movable mirror in
terms of its displacement ∆L and the wavelength λ of the light source.

(c) [5 points] The fringe visibility V in the output of the interferometer gives a quanti-
tative indication of the contrast of interference,

V =
Imax − Imin
Imax + Imin

(2)

In terms of B, what values of A in Eq. (1) are needed to obtain visibilities V = 0.5
and 1.0?

Plot Iout as a function of phase difference δ for these two values of V . Label both of
the axes carefully.
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The output intensity Iout of the interferometer can be used to measure very small displace-
ments in the movable mirror. This is the principle that LIGO uses to detect gravitational
waves. Since the wave’s local metric oscillates in time, so does ∆L and δ. Assume that the
phase δ oscillates with small amplitude ε about some reference phase δo, δ = δo + ε sinωt.
(Here ω � c/2πλ.) This leads to an oscillation of Iout about Iout(δo). The amplitude of this
oscillation is the measured signal S, so to O(ε),

S = ε
dIout(δ)

dδ

∣∣∣∣
δ=δo

. (3)

The reference phase δ0 can be adjusted to an optimum value, for example by changing the
position of the fixed mirror.

(d) [3 points] For what value of δo is |S| maximized? What is S at this point?

(e) [6 points] Now consider that in a real measurement you have various noise contribu-
tions, so you may instead want to maximize the Signal to Noise ratio S/N . Often the
largest noise is the shot noise, N ∼

√
Iout(δo). Suppose the visibility is close to unity

so that in Eq. (1), A� B. For this case, what value of δo maximizes |S/N | (in terms
of A)? What is |S| and (up to a factor) |S/N | at this point? Interpret this result.

(f) [4 points] For small A, parts (d) and (e) give different optimum operating points.
Discuss this result.

Useful trigonometric relations:

2 cos2A = 1 + cos 2A

cos (A+B) = cosA cosB − sinA sinB

sinA+ sinB = 2 cos

[
A−B

2

]
sin

[
A+B

2

]
sin (A+B) = sinA cosB + cosA sinB
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