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Do any four problems.  Each problem is worth 25 points. 

Put all answers on your answer sheets. 

Be sure your Qualifier ID Number is at the top right corner of each 
sheet and turn in solutions to four problems only.  If five solutions  
are turned in we will grade # 1 - # 4.     



Problem II.1

This problem studies interplay between scattering and bound states, and shows that bound
states can be obtained as pole singularities in the scattering matrix Ŝ.

Consider an arbitrary potential V (x) in one dimension vanishing for |x| > a. The wave
functions ψ(x) of energy E are superpositions of plane waves outside of the potential:

ψ(x) =

{
Aeikx +Be−ikx, x ≤ −a,
Ceikx +De−ikx, x ≥ a,

E =
~2k2

2m
. (1)

(a) [2 points] Explain why the terms with A and D in Eq. (1) represent the incoming
waves, whereas the terms with B and C represent the outgoing waves.

(b) [5 points] A linear relation between the incoming and outgoing waves is represented
by the 2× 2 scattering matrix Ŝ:(

C
B

)
= Ŝ

(
A
D

)
, Ŝ =

(
S11 S12

S21 S22

)
. (2)

Show that the matrix Ŝ is unitary, i.e. Ŝ†Ŝ = 1̂. Hint: Use probability flux conserva-
tion.

(c) [5 points] Suppose the potential V (x) = V (−x) is symmetric. In this case, you may
consider a symmetric wave function ψs(−x) = ψs(x) with A = D and B = C.

Using probability flux conservation, show that the outgoing waves in ψs(x) differ from
the incoming waves by a phase factor eiφ. Prove the following relation for the matrix
elements: S11 + S12 = S22 + S21 = eiφ.

(d) [6 points] Now consider a specific example of the delta-function potential

V (x) = β δ(x), γ = β
m

~2
, (3)

where β and γ are coefficients representing the strength of the potential. Calculate the
sum of the matrix elements S11 + S12 = eiφ in terms of γ and k.

Hint: Integrating Schrödinger’s equation around x = 0, find a condition on ψ(0) and
the derivatives ψ′(±ε) at ε→ 0. Applying this condition to ψs(x) in Eq. (1), find eiφ.

(e) [5 points] Now let us formally treat k = k′ + ik′′ as a complex variable with real and
imaginary parts k′ and k′′. Show that S11 + S12 as a function of the complex variable
k has a pole singularity on the imaginary axis at k′′ > 0 for γ < 0. Examining Eqs. (1)
and (2), show that the wave function ψs(x) in this case corresponds to a bound state
and find its exponential decay rate vs. |x|. Substituting the imaginary k into Eq. (1)
for E, find the energy of this bound state.

(f) [2 points] Discuss briefly how the consideration in Part (e) changes when the potential
(3) is repulsive with γ > 0.
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Problem II.2

At times t < 0, a system described by a Hamiltonian H is in the quantum state |n〉 with the
energy En

H|n〉 = En|n〉.

At time t = 0, the system is perturbed by an external potential V , so the system Hamiltonian
suddenly changes from H to H + V for t > 0. Assume H and V to be time-independent.
Let us denote the new set of energy eigenstates by primes in order to distinguish it from the
old set:

(H + V )|m′〉 = Em′|m′〉.

(a) [5 points]

(a) What is the probability of finding the system in a new eigenstate |m′〉 for t > 0,
given that it was in the state |n〉 at t < 0? Does this probability change in time?

(b) What is the change in the energy expectation value of the system
∆E = E(t > 0)− E(t < 0), in terms of matrix elements of V ?

(b) [10 points] Suppose H is the Hamiltonian of a one-dimensional infinite square-well
potential of width L, and the system is in the ground state |n = 1〉 of this potential at
t < 0. At t > 0, the width of the well suddenly doubles from L to 2L.

(a) Explicitly calculate the probability of finding the system in an energy eigenstate
|m′〉 of the expanded well for t > 0.

Does this probability vanish for certain values of m′? Explain qualitatively.

(b) What is ∆E in this case?

(c) [10 points] Suppose H is the Hamiltonian of a one-dimensional infinite square-well
potential located at 0 < x < L, and the system is in the ground state |n = 1〉 of this
potential at t < 0. At t > 0, the following perturbation is applied:

V (x) =

{
V0 for 0 < x < L/3,
0 for L/3 < x < L.

Explicitly calculate ∆E in this case. Do not assume that V0 is small.

Useful formula:

sinα sin β =
cos(α− β)− cos(α + β)

2
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Problem II.3

Assuming a two-dimensional geometry with rectangular coordinates x and y, consider a
particle of mass m in an infinitely long channel of width w, with potential V = 0 in 0 < y < w
and V = +∞ in y < 0 and y > w, as shown in the Figure.

-
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(a) [2 points] Write down the Schrödinger equation for a wavefunction ψ(x, y) of energy
E in the channel. What are the appropriate boundary conditions on ψ at y = 0 and
at y = w?

(b) [5 points] Show that there are solutions for ψ(x, y) that are of the form

ψn(x, y) =

{
un(y)e±iknx, kn =

√
k20 − (nπ/w)2 for n ≤ n∗,

un(y)e±anx, αn =
√

(nπ/w)2 − k20 for n ≥ n∗ + 1,
(1)

Here n = 1, 2 . . . is an integer that enumerates the functions un by increasing eigenvalue,
and n∗ is the largest value of n for which (nπ/w)2 < k20 ≡ 2mE/~2. The functions un(y)
are orthonormal,

∫ w
0
un(y)um(y)dy = δnm and complete,

∑∞
n=1 un(y)un(y′) = δ(y− y′).

What are the functions un(y)?

For what range of energies are there no propagating modes (i.e. n∗ = 0)?

The Green’s function for the domain 0 < y < w of the Figure is defined to be the solution
of the equation{

~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ E

}
G(x, x′, y, y′) = δ(x− x′) δ(y − y′). (2)

For 0 < y < w, 0 < y′ < w, appropriate boundary conditions on G, and outgoing waves at
x→ +∞ and x→ −∞, it can be written as

G(x, x′, y, y′) =
m

~2
∞∑
n=1

e−γn|x−x
′|

γn
un(y′)un(y), (3)

where γn = αn for n ≥ n∗ + 1 and γn = −ikn for n ≤ n∗.

(c) [7 points] Verify that Eq. (3) for G satisfies Eq. (2).
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(d) [5 points] Now assume that there is a weak, localized scattering potential Vs(x, y)
placed in the channel, where |Vs(x, y)| � E everywhere (i.e., the potential is weak), and
Vs(x, y) = 0 for |x| > ∆ (i.e., the potential is localized in x). Let V s = maxx,y |Vs(x, y)|
characterize the strength of the potential, with ε = V s/E a small parameter.

Consider a solution of the Schrödinger equation for this problem of the form ψ =
ψ0 + ψ1, where ψ0 is a solution for Vs = 0, and ψ1 is a small correction, due to Vs, of
size ε compared to ψ0. Write a formula for ψ1 in terms of ψ0 and the Green’s function
G of Eq. (2), to first order in ε.

(e) [6 points] Finally, consider the situation in which k0∆� 1, n∗ = 1, and ψ0 is a wave
incident from the left:

ψ(0) → Au1(y)eik1x for x→ −∞.

This wave scatters off the scattering potential, producing a reflected wave,

ψ(1) = SAu1(y)eik0|x| = SAu1(y)e−ik1x for x→ −∞

and a transmitted wave,

ψ(0) + ψ(1) = TAu1(y)eik1x for x→ +∞

For ε� 1, to lowest order in ε, the scattering coefficient S is proportional to ε, while
the transmission coefficient T is equal to one plus a correction term proportional to ε.
Find S and T up to order ε in terms of integrals over Vs and u1.
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Problem II.4

Let H0 be the Hamiltonian of a spinless nonrelativistic particle in a central potential V0(r).
Energy eigenstates are the eigenstates of angular momentum and can be labeled as |n, l,m〉.
Apart from the (2l+ 1)-fold degeneracy arising from spherical symmetry, there are no other
degeneracies in the spectrum of H0. This problem concerns how the spectrum changes when
a perturbation V of a particular form is added to H0, so that H = H0 + V with

V (r, θ, φ) = λ e−r
2/R2

rK Y 0
K(θ, φ).

Here the perturbing potential is written in spherical coordinates, the parameter λ represents
the strength of the potential, R is a constant with units of length, K is a positive integer,
and Y m

l is a spherical harmonic.
At various stages of this problem, you may find helpful to think about parity, time rever-

sal, and spherical tensors. You should assume that quantities never vanish accidentally, i.e.
they only vanish for reasons of symmetry. If Clebsch-Gordan coefficients arise, simply state
your result in terms of them. You do not need to evaluate them explicitly.

In Parts (a) and (b), work to all orders in the strength λ of the perturbation.

(a) [5 points] When the perturbation is included, does the quantum number m remain a
good quantum number for the system? If so, explain briefly why or why not.

(b) [5 points] The perturbation breaks the (2l + 1)-fold degeneracy. Is there any surviv-
ing degeneracy in the spectrum? If not, explain briefly why not. If so, identify the
degeneracy and explain briefly its origin.

In Parts (c)-(e), you may assume that the strength parameter λ is small. Let us denote
by ∆En,l,m the energy shift of the state |n, l,m〉 (as labeled in the unperturbed eigenbasis)
due to the perturbation. For small λ, one might generically expect that the energy shift is
given by the first-order perturbation theory, so that ∆En,l,m ∝ λ. However, under certain
circumstances, the first-order perturbation vanishes, and this linear dependence on λ is
absent. In these cases, the dominant behavior is quadratic in λ: ∆En,l,m ∝ λ2.

(c) [5 points] Recall that the perturbation depends on the integer K, which specifies
the spherical harmonic. Consider the case K = 3, where V = λ e−r

2/R2
r Y 0

3 (θ, φ).
Determine which energy levels, if any, have a quadratic dependence on λ as the leading
behavior. (Hint: This amounts to asking for which states the first-order perturbation
vanish. Consideration of parity may be helpful.)

(d) [5 points] Consider the case K = 6, where V = λ e−r
2/R2

r6 Y 0
6 (θ, φ). Using the

Wigner-Eckart theorem, determine which energy levels, if any, have a quadratic de-
pendence on λ as the leading behavior.

(e) [5 points] Consider the case K = 2, where V = λ e−r
2/R2

r2 Y 0
2 (θ, φ). In this case,

∆En,l=1,m ∝ λ for the states with l = 1. You may assume this linear dependence to be
correct without proving it. Using the Wigner-Eckart theorem, express the ratio of the
energy shifts ∆En,l=1,m/∆En,l=1,m′ in terms of Clebsch-Gordan coefficients.

5

Fall 2013



Problem II.5

This problem is inspired by Einstein’s model of a solid, where vibrations of atoms in a crystal
lattice are modeled using a set of independent harmonic oscillators.

Consider a system of N one-dimensional non-interacting harmonic oscillators of frequency
ω in thermal equilibrium at temperature T .

(a) [5 points] First suppose the oscillators are classical. Find the partition function,

Z
(c)
N (T ), of the system of N classical oscillators.

(b) [4 points] Calculate the energy, U (c), and heat capacity, C(c), of the classical oscillator
system. Here and in Part (e) below, you may find the following equation for the energy
useful:

U = − ∂

∂β
lnZ,

where β = 1/kBT , and kB is the Boltzmann constant.

(c) [2 points] Explain how to derive your result for C(c) using the equipartition theorem.

(d) [5 points] Now suppose the oscillators are quantum. Find the partition function,

Z
(q)
N (T ), of the system of N quantum oscillators.

(e) [4 points] Calculate the energy, U (q), and heat capacity, C(q), of the quantum oscillator
system.

(f) [3 points] At what temperatures do the quantum oscillators behave as classical ones?
Take the classical limit in your result for C(q) and reproduce the corresponding classical
result, C(c).

(g) [2 points] How does C(q) behave in the limit T → 0? Sketch C(q) vs. T from T = 0
to high temperatures.
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