UNIVERSITY OF MARYLAND

DEPARTMENT OF PHYSICS

PHYS 606	Spring 2018		
TITLE:	Electrodynamics		
INSTRUCTOR:	T M. Antonsen Jr. mailto:antonsen@umd.edu 3339 A. V. Williams II 405-1635 Office hours: Tues 2:30-4, or by appointment		
GRADER:	TBD		
ROOM:	PHYS 1402		
TIME:	Tu-Th 11:00 – 12:50		
COURSE DESCRIPTION radiation, special relativity	Classical Electrodynamics, Static and dynamic electromagnetic fields, electromagnetic waves,		
TEXT:	Classical Electrodynamics, J. D. Jackson (John Wiley and Sons, 3 rd edition, ISBN 0-471-30932-X)		
EXAMS:	There will be three exams: two midterms and a final exam. These will be take-home		
HOMEWORK:	Assignments will be posted on the web. Assignments may involve computation.		
GRADING:	Your course grade will be computed on the basis of 400 points apportioned as follows:		
Two midterr Final Homework	ns 200 100 <u>100</u> 400		

Tentative Schedule

Торіс	Text Chapters	Lectures ¹
Fundamentals of Electrostatics	1.1 - 1.8	1
Energy, Capacitance, Variational	1.11 - 1.13	2,3
Approach		
Method of Images, Fields Near	2.1 - 2.6, 2.11,	4,5
Corners, Finite Elements	2.12	
Fields Near Protrusions	3.4	6
Multipoles, Dielectrics	4.1 - 4.7	7,8
	Exam 1	On around March 5, 2018
Magnetostatics, Ampere's Law,	5.1 - 5.12	9,10
Biot-Savart Law, Scalar Potential,		
Vector Potential		
Faraday's Law, Magnetic Energy,	5.15 - 5.17	11, 12
Self and Mutual Inductance		
Maxwell's Displacement Current	6.1 - 6.9	13, 14
and Equations, Conservation Laws,		
Gauge transformations		
Plane Waves, Polarization,	7.1 – 7.4	15, 16
Reflection at Discontinuities		
Dispersion, frequency-dependent	7.5 - 7.11	17, 18
dielectrics, Foster's theorem, pulse		
propagation		
	Exam 2	On around April 20, 2018
Guided Waves, conducting	8.1 - 8.5	19, 20
waveguides, optical waveguides,		
cavities, transmission lines		
Radiation, moving charges,	9.1 – 9.4	21, 22
antennas, coherent/incoherent		
Special Relativity, transformations,	11.3 – 11.6	23, 24
Energy and Momentum, Charged		
Particle Motion in Strong Fields,		
Lagrangian Densitty		
Special Topics: by popular demand		25 - 27
Diffraction		
Scattering		
Metamaterials		
Plasma Oscillations and Waves		
Surface Plasma Waves		
	Final Exam	

1 Lecture is two 50 minute periods.