UMD_CMNS_Physics_S1_CMYK

  • Home
  • About Us
    • Physics Administration
    • Directions
    • Awards
    • Student Awards
    • Make a Donation
    • News
      • Research News
      • Department News
      • Newsletters
  • People
    • All
    • Faculty
      • Current
      • Emeritus
      • Adjunct
      • Affiliate
      • Research Professors
    • Research Scientists
    • Postdocs
    • Staff
    • Lecturers
    • Visitors
    • Graduate Students
  • Research
    • Research Areas
      • AI and Physical Sciences
      • Astro Metrology
      • Atomic, Molecular & Optical
      • Biophysics
      • Chemical Physics
      • Condensed Matter Experiment
      • Condensed Matter Theory
      • Cosmic Ray Physics
      • Elementary Particles
      • Gravitation Experiment
      • Gravitational Theory
      • High Energy Physics
      • Nonlinear Dynamics, Chaos and Complex Systems
      • Nuclear Physics
      • Particle Astrophysics
      • Physics Education Research
      • Plasma Physics
      • Plasma Theory
      • Quantum Science and Technology
      • Quarks, Hadrons and Nuclei
      • Space Physics
    • Centers & Institutes
  • Academics
    • OSES Home (Student Services)
    • OSES News
    • Undergraduate Program
      • Prospective Students
      • Apply Now
      • Degree Requirements and Policies
      • Scholarships
      • Undergraduate Research
      • Advising
      • Undergraduate Forms
      • Undergraduate Events
      • Departmental Honors
      • Society of Physics Students
      • FAQ
      • Undergraduate Student Committee
    • Graduate Program
      • Prospective Students
      • Open House
      • Degree Requirements
      • Graduate Resources
      • Deadlines and Forms
      • PhD Defenses
        • PhD Defenses 2025
        • PhD Defenses 2024
        • PhD Defenses 2023
        • PhD Defenses 2022
        • PhD Defenses 2021
        • PhD Defenses 2020
        • PhD Defenses 2019
        • PhD Defenses 2018
        • PhD Defenses 2017
        • PhD Defenses 2016
      • Events
      • Scholarships & Awards
      • Qualifier
      • Graduate Student Organizations
      • FAQ
    • Student Opportunities
      • GRAD-MAP
      • Graduate Student Organizations
      • Outreach Volunteering
      • Society of Physics Students
      • NSF S-STEM Program
      • Undergraduate Research
      • Women in Physics
      • Undergraduate Quantum Association
    • Courses
    • Academic Support
    • NSF S-STEM Program
    • Teaching Assistants
    • Where's my TA?
  • Events
    • Calendar
    • Physics Colloquia
    • Event Submission
    • W.J. Carr Lecture
    • Research Interaction Team (RIT) Math/Physics
    • Mechanick Quantum Biology Lecture
    • Irving and Renee Milchberg Endowed Lectureship
    • Charles W. Misner Endowed Lectureship in Gravitational Physics
    • John S. Toll Endowed Lecture
    • Prange Prize Lecture
    • Maryland Day
    • Outreach
      • Outreach Home
      • Physics is Phun
      • Discovery Days
    • Summer Programs
      • Physics Makers Camp
      • Physics of Quidditch
      • Science Discovery Camp
      • Advanced Physics Summer Program
      • Toolkit for Success
    • CUWiP
    • Vortex Makerspace
  • Services
    • Computing Services
    • Conference Room Reservations
    • Department Operations Directory
    • Electronic and Mechanical Development
    • Hiring Procedures
    • Lecture Demo
    • Mental Health Resources
    • Physics Ombudspersons
    • Printing Services
      • Poster Print Request
    • Proposal Submissions
    • Purchase Order
    • Suggestion Box
    • Textbook Order Form

Plotting the Future of Particle Physics Research

Details
Category: Department News
Published: Wednesday, April 22 2020 05:56

Three University of Maryland researchers have been elected co-conveners of topical groups that will help determine the future of particle physics research.  

The Snowmass Process is organized by the Division of Particles and Fields (DPF) of the American Physical Society. Snowmass facilitates discussion among high energy physicists for review by the Particle Physics Project Prioritization Panel (P5), which will identify and prioritize the most valuable areas of particle physics study in the years to come. The last P5 report was issued in May, 2014.

Associate Professor Alberto Belloni was named co-convener for the electroweak precision physics and constraining physics subgroup of the energy frontier group.  Because of the Heisenberg uncertainty principal, precise measurements of the known particles and their properties can reveal the presence of heavy as-of-yet undiscovered particles.  Measurements of this type foretold both the discovery of the top quark and the Higgs boson. Belloni has held various leadership appointments at the Compact Muon Solenoid experiment at CERN. He joined UMD in 2013.

Also in the energy frontier group, Zhen Liu was named co-convener for the more general explorations of Beyond the Standard Model physics. Such studies are key to understanding the discovery potential of proposed future particle colliders. Liu is a postdoctoral researcher at the Maryland Center for Fundamental Physics (MCFP). He received his Ph.D. from the University of Pittsburgh in 2015.

In the theory frontier group, Assistant Professor Zohreh Davoudi was elected co-convener of the lattice gauge theory discussion. Davoudi joined UMD in 2017 and has since received an Early Career Award from the Department of Energy, a Sloan Research Award and the Ken Wilson Award. She is also a member of MCFP.

Alumna Mirjam Cvetic (Ph.D., ’84) serves on the DPF Executive Committee and Snowmass 2021 Advisory Group. Haibo Yu (Ph.D., ‘07) is a co-convener in dark matter astronomy probes and Ira Rothstein (Ph.D., ’92) will work on effective field theory techniques.

Mohapatra's Pioneering "Seesaw" Work Noted

Details
Category: Department News
Published: Tuesday, April 21 2020 05:56

A paper by Distinguished University Professor Rabi Mohapatra has been named one of the three most influential titles in the first fifty years of Physical Review D, which was established to cover the fields of particles, fields, gravitation, and cosmology.

The “neutrino mass seesaw" paper written with Goran Senjanović (his former student, then a post-doc at the University of Maryland), has helped theorists better assess neutrinos and has inspired various experimental quests, as noted in Physics magazine.MohapatraRabi Convocation 2016Mohapatra honored as a Distinguished University Professor, Sept. 14, 2016.

Mohapatra received his Ph.D. from the University of Rochester in 1969, under the guidance of Robert Marshak and Susumu Okubo. After postdoctoral appointments at Stony Brook University and this campus, he joined the faculty of the City College of New York before returning to the University of Maryland as a full professor.

In addition to the neutrino mass seesaw paper, Mohapatra is well-known for being one of the co-proponents of the left-right symmetric theories of weak interactions, proposed during his UMD postdoctoral position in 1974.  He also proposed the experimental search for neutron-anti-neutron oscillation and the idea of the massless particle majoron. He has also worked extensively on SO(10) grand unification.

Mohapatra is a Fellow of the American Physical Society, a member of the Indian Academy of Sciences, a recipient of the Alexander von Humboldt Prize and a University of Maryland Distinguished Scholar-Teacher. In 2016, he was named a Distinguished University Professor.

==============

Reference paper: R. Mohapatra and G. Senjanović, “Neutrino masses and mixings in gauge models with spontaneous parity violation,” Phys. Rev. D 23, 165 (1981).

Jarzynski Awarded a 2020 Guggenheim Fellowship

Details
Category: Department News
Published: Monday, April 20 2020 05:56
The John Simon Guggenheim Memorial Foundation awarded a 2020 Guggenheim Fellowship to Distinguished University Professor Christopher Jarzynski.

Christopher JarzynskiChristopher Jarzynski. Photo credit: Faye Levine

Each year, 175 Guggenheim Fellowships are awarded to a diverse group of writers, scholars, artists and scientists. Chosen from nearly 3,000 applicants representing 53 scholarly disciplines and artistic fields, Jarzynski is one of only two winners selected in the physics category this year.

"The Guggenheim Foundation has been awarding these fellowships for scholarship and the creative arts for nearly a century, and quite a few have been awarded to UMD faculty over the years,” Jarzynski said. “I'm honored to have been selected as one of this year's Fellows. I plan to use the award for the sabbatical that I will take during the 2020-21 academic year."

Jarzynski is a statistical physicist and theoretical chemist who models the random motions of atoms and molecules using mathematics and statistics. Working at the boundary between chemistry and physics, Jarzynski studies how the laws of thermodynamics—originally developed to describe the operation of steam engines—apply to complex microscopic systems such as living cells and artificial nanoscale machines.

Jarzynski is well known for developing an equation to express the second law of thermodynamics for systems at the molecular scale. The equation is known as the Jarzynski equality. Published in the journal Physical Review Letters in 1997, the paper that introduced his equation has been cited in scientific literature more than 4,000 times.

When the 2018 Nobel Prize in physics was awarded for inventions in laser physics, the Nobel Committee cited testing the Jarzynski equality as an application of one of the winning inventions—optical tweezers. Optical tweezers use laser beams to manipulate extremely small objects such as biological molecules.

More recently, Jarzynski’s research has led to a new method for measuring “free energy”—the energy available to any system to perform useful work—in extremely small systems. This research is fundamental to new technologies and may lay the foundation for development of molecular- and quantum-scale machines.

A Fellow of the American Physical Society (APS) and a member of the American Academy of Arts and Sciences, Jarzynski received a 2020 Simons Fellowship and the APS’ 2019 Lars Onsager Prize, which recognizes outstanding research in theoretical statistical physics. He was also awarded a Fulbright Scholarship and the Raymond and Beverly Sackler Prize in the Physical Sciences. He serves on the editorial board for the Journal of Statistical Mechanics: Theory and Experiment and is an associate editor for the Journal of Statistical Physics.

Jarzynski earned his B.A. in physics from Princeton University and his Ph.D. in physics from the University of California, Berkeley. After a postdoctoral appointment at the Institute for Nuclear Theory in Seattle, he spent 10 years at Los Alamos National Laboratory. He has been on the faculty of the University of Maryland since 2006.

Original story here.

 

 

Peeking into a World of Spin-3/2 Materials

Details
Category: Research News
Published: Thursday, April 16 2020 10:32
Researchers have been pushing the frontiers of the quantum world for over a century. And time after time, spin has been a rich source of new physics.

Spin, like mass and electrical charge, is an intrinsic property of quantum particles. It is central to understanding how quantum objects will respond to a magnetic field, and it divides all quantum objects into two types. The half-integer ones, like the spin-1/2 electron, refuse to share the same quantum state, whereas the integer ones, like the spin-1 photon, don’t have a problem cozying up together. So, spin is essential when delving into virtually any topic governed by quantum mechanics, from the Higgs Boson to superconductors.  In a material, the momentum and energy of an electron are tied together by a “dispersion relation” (pictured above). This relationship influences the electrons’ behavior, sometimes making them behave as particles with different quantum properties. (Credit: Igor Boettcher/University of Maryland)In a material, the momentum and energy of an electron are tied together by a “dispersion relation” (pictured above). This relationship influences the electrons’ behavior, sometimes making them behave as particles with different quantum properties. (Credit: Igor Boettcher/University of Maryland)

Yet after almost a century of playing a central role in quantum research, questions about spin remain. For example, why do all the elementary particles that we know about only have spin values of 0, 1/2, or 1? And what new behaviors might exist for particles with spin values greater than 1?

The first question may remain a cosmic mystery, but there are opportunities to explore the second. Inside of a material, a particle’s surroundings can cause it to behave like it has a new spin value. In the past couple years, researchers have discovered materials in which electrons behave like their spin has been bumped up, from 1/2 to 3/2. UMD postdoctoral researcher Igor Boettcher of the Joint Quantum Institute explored the new behaviors these spins might produce in a recent paper featured on the cover of Physical Review Letters.

Instead of looking at a particular material, Boettcher focused on the math that describes interactions between spin-3/2 electrons at low temperatures. These electrons can interact in more ways than their mundane spin-1/2 counterparts, which unlocks new phases—or collective behaviors—that researchers can look for in experiments. Boettcher sifted through the possible phases, searching for the ones that are likely to be stable at low temperatures. He looked at which phases tie up the least energy in the interactions, since as the temperature drops a material becomes most stable in the form containing the least energy (like steam condensing into liquid water and eventually freezing into ice).

He found three promising phases to hunt for in experiments. Which of these phases, if any, arise in a particular material will depend on its unique properties. Still, Boettcher’s predictions provide researchers with signals to keep an eye out for during experiments. If one of the phases forms, he predicts that common measurement techniques will reveal a signature shift in the electrical properties.

Boettcher’s work is an early step in the exploration of spin-3/2 materials. He hopes that one day the field might be comparable to that of graphene, with researchers constantly racing to explore new physics, produce better quality materials, and identify new transport properties.

“I really hope that this will develop into a big field, which will require both experimentalists and the theorists to do their part so that we can really learn something about the spin-3/2 particles and how they interact.” says Boettcher. “This is really just the beginning right now, because these materials just popped up.”

Story by Bailey Bedford

 
Reference Publication
"Interplay of Topology and Electron-Electron Interactions in Rarita-Schwinger-Weyl semimetals," Igor Boettcher, Phys. Rev. Lett., 124, 127602 (2020)
Research Contact: Igor Boettcher  This email address is being protected from spambots. You need JavaScript enabled to view it.
 
Media Contact: Bailey Bedford This email address is being protected from spambots. You need JavaScript enabled to view it.
Originally published here:  https://jqi.umd.edu/news/peeking-into-world-spin-32-materials
 

More Articles ...

  1. New Protocol Helps Classify Topological Matter
  2. Understanding and Exploring Network Epidemiology in the Time of Coronavirus
  3. Donuts, Donut Holes and Topological Superconductors
  4. Charting a Course Toward Quantum Simulations of Nuclear Physics

Page 83 of 239

  • Start
  • Prev
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • Next
  • End
  • Physics Administration
  • Directions
  • Awards
  • Student Awards
  • Make a Donation
  • News
    • Research News
    • Department News
    • Newsletters

College and University Links

UMD_CMNS_Physics_P1_CMYK_W

 

UMD-Primary-Logo-White

Department of Physics

University of Maryland
College Park, MD 20742-4111
Phone: 301.405.3401

 

Questions or Comments? Send us an e-mail.

Information

  • Campus Directory
  • Scholarship Opportunities
  • Undergraduate Research Opportunities
  • Prospective Undergraduates
  • Interactive Campus Map
  • Metrorail Map
  • UMShuttle Routes
  • Make a Donation 
  • Web Accessibility
  • Twitter
Department of Physics - University of Maryland - College Park, MD 20742