Researchers Generate Tunable Twin Particles of Light

Identical twins might seem “indistinguishable,” but in the quantum world the word takes on a new level of meaning. While identical twins share many traits, the universe treats two indistinguishable quantum particles as intrinsically interchangeable. This opens the door for indistinguishable particles to interact in unique ways—such as in quantum interference—that are needed for quantum computers.A new technique sees two distinct particles of light enter a chip and two identical twin particles of light leave it. The image artistically combines the journey of twin particles of light along the outer edge of a checkerboard of rings with the abstract shape of its topological underpinnings. (Credit: Kaveh Haerian)A new technique sees two distinct particles of light enter a chip and two identical twin particles of light leave it. The image artistically combines the journey of twin particles of light along the outer edge of a checkerboard of rings with the abstract shape of its topological underpinnings. (Credit: Kaveh Haerian)

While generating a crowd of photons—particles of light—is as easy as flipping a light switch, it’s trickier to make a pair of indistinguishable photons. And it takes yet more work to endow that pair with a quantum mechanical link known as entanglement. In a paper published May 10, 2021 in the journal Nature Photonics(link is external), JQI researchers and their colleagues describe a new way to make entangled twin particles of light and to tune their properties using a method conveniently housed on a chip, a potential boon for quantum technologies that require a reliable source of well-tailored photon pairs.

The researchers, led by JQI fellow Mohammad Hafezi, designed the method to harness the advantages of topological physics. Topological physics explores previously untapped physical phenomena using the mathematical field of topology, which describes common traits shared by different shapes. (Where geometry concerns angles and sizes, topology is more about holes and punctures—all-encompassing characteristics that don’t depend on local details.) Researchers have made several major discoveries by applying this approach, which describes how quantum particles—like electrons or, in this case, photons—can move in a particular material or device by analyzing its broad characteristics through the lens of topological features that correspond to abstract shapes (such as the donut in the image above). The topological phenomena that have been revealed are directly tied to the general nature of the material; they must exist even in the presence of material impurities that would upset the smooth movement of photons or electrons in most other circumstances.

Their new method builds on previous work, including the generation of a series of distinguishable photon pairs. In both the new and old experiments, the team created a checkerboard of rings on a silicon chip. Each ring is a resonator that acts like a tiny race track designed to keep certain photons traveling round and round for a long time. But since individual photons in a resonator live by quantum rules, the racecars (photons) can sometimes just pass unchanged through an intervening wall and proceed to speed along a neighboring track.

The repeating grid of rings mimics the repeating grid of atoms that electrons travel through in a solid, allowing the researchers to design situations for light that mirror well known topological effects in electronics. By creating and exploring different topological environments, the team has developed new ways to manipulate photons.

“It's exactly the same mathematics that applies to electrons and photons,” says Sunil Mittal, a JQI postdoctoral researcher and the first author of the paper. “So you get more or less all the same topological features. All the mathematics that you do with electrons, you can simply carry to photonic systems.”

In the current work, they recreated an electronic phenomenon called the anomalous quantum Hall effect that opens up paths for electrons on the edge of a material. These edge paths, which are called topological edge states, exist because of topological effects, and they can reliably transport electrons while leaving routes through the interior easily disrupted and impassable. Achieving this particular topological effect requires that localized magnetic fields push on electrons and that the total magnetic field when averaged over larger sections of the material cancels out to zero.

But photons lack the electrical charge that makes electrons susceptible to magnetic shoves, so the team had to recreate the magnetic push in some other way. To achieve this, they laid out the tracks so that it is easier for the photons to quantum mechanically jump between rings in certain directions. This simulates the missing magnetic influence and creates an environment with a photonic version of the anomalous quantum Hall effect and its stable edge paths.

For this experiment, the team sent two laser beams of two different colors (frequencies) of light into this carefully designed environment. Inside a resonator, a photon from each of the beams spontaneously combine. The researchers then observed how the photons reformed into two indistinguishable photons, travelled through the topological edge paths and were eventually ejected from the chip.

Since the new photons formed inside a resonator ring, they took on the traits (polarization and spatial mode) of the photons that the resonators are designed to hold. The only trait left that the team needed to worry about was their frequencies.

The researchers matched the frequencies of the photons by selecting the appropriate input frequencies for the two lasers based on how they would combine inside the silicon resonators. With the appropriate theoretical understanding of the experiment, they can produce photons that are quantum mechanically indistinguishable.

The nature of the formation of the new photons provides the desired quantum characteristics. The photons are quantum mechanically entangled due to the way they were generated as pairs; their combined properties—like the total energy of the pair—are constrained by what the original photons brought into the mix, so observing the property of one instantly reveals the equivalent fact about the other. Until they are observed—that is, detected by the researchers—they don’t exist as two individual particles with distinct quantum states for their frequencies. Rather, they are identical mixtures of possible frequency states called a superposition. The two photons being indistinguishable means they can quantum mechanically interfere with each other

The resulting combination of being indistinguishable and entangled is essential for many potential uses of photons in quantum technologies. An additional lucky side effect of the researcher’s topological approach is that it gives them a greater ability to adjust the frequencies of the twin photons based on the frequencies they pump into the chip and how well the frequencies match with the topological states on the edge of the device.

“This is not the only way to generate entangled photon pairs—there are many other devices—but they are not tunable,” Mittal says. “So once you fabricate your device, it is what it is. If you want to change the bandwidth of the photons or do something else, it's not possible. But in our case, we don't have to design a new device. We showed that, just by tuning the pump frequencies, we could tune the interference properties. So, that was very exciting.”

The combination of the devices being tunable and robust against manufacturing imperfections make them an appealing option for practical applications, the authors say. The team plans to continue exploring the potential of this technique and related topological devices and possible ways to further improve the devices such as using other materials to make them.

Original story by Bailey Bedford:

In addition to Hafezi and Mittal, former JQI graduate student Venkata Vikram Orre and former JQI postdoctoral researcher and current assistant professor at the University of Illinois Urbana-Champaign Elizabeth Goldschmidt were also co-authors of the paper.

Research Contact: Mohammad Hafezi This email address is being protected from spambots. You need JavaScript enabled to view it.  

Buonanno Elected to National Academy of Sciences

Alessandra Buonanno has been elected to the National Academy of Sciences (NAS).

Buonanno is the director of the Astrophysical and Cosmological Relativity Department at the Max Planck Institute for Gravitational Physics in Potsdam and a Research Professor at the University of Maryland. She joined the UMD Department of Physics in 2005, and received an Alfred P. Sloan Foundation Fellowship and the Richard A. Ferrell Distinguished Faculty Fellowship. She is a Fellow of the American Physical Society and the International Society of General Relativity and Gravitation. In 2018, she received the Leibniz Prize, Germany's prestigious research award. Earlier in 2021, she was awarded the Galileo Galilei Medal of the National Institute for Nuclear Physics (INFN).

Buonanno was one of 59 women elected to the NAS this year, the most in the academy’s history. Also elected was UMD Professor of Psychology Michele Gelfand.Alessandra Buonanno © A. Klaer Alessandra Buonanno © A. Klaer

The new class brings the total number of active members to 2,461 and the total number of international members to 511.  Other UMD physics members of the NAS include Michael Fisher, Jim Gates, Chris Jarzynski, John Mather, Chris Monroe, Bill Phillips, Roald Sagdeev, Rob Tycko, John Weeks and Ellen Williams.

Buonanno was also recently elected to the German National Academy of Sciences Leopoldina, which originated in 1652 as a classical scholarly society.

Buonanno's research has spanned several topics in gravitational-wave theory, data-analysis and cosmology. She is a Principal Investigator of the LIGO Scientific Collaboration, and her waveform modeling of cosmological events has been crucial in the experiment’s many successes.

Buonanno, Charlie Misner, Peter Shawhan and others detailed UMD's contributions to gravitational studies in a 2016 forum, A Celebration of Gravitational Waves

Two (Photons) is Company, Three’s a Crowd

Photons—the quantum particles of light—normally don’t have any sense of personal space. A laser crams tons of photons into a tight beam, and they couldn’t care less that they are packed on top of each other. Two beams can even pass through each other without noticing. This is all well and good when making an extravagant laser light show or using a laser level to hang a picture frame straight, but for researchers looking to develop quantum technologies that require precise control over just one or two photons, this lack of interaction often makes life difficult.

Now, a group of UMD researchers has come together to create tailored interactions between photons in an experiment where, at least for photons, two’s company but three’s a crowd. The technique builds on many previous experiments that use atoms as intermediaries to form connections between photons that are akin to the bonds between protons, electrons and other kinds of matter. These interactions, along with the ability to control them, promises new opportunities for researchers to study the physics of exotic interactions and develop light-based quantum technologies. 

“With a laser you cannot really say ‘I only want one photon or two photons or three photons,’ or ‘I only want one and two photons, but not three photons,’” says Dalia Ornelas-Huerta, (Ph.D., '20)  the lead experimental author on the paper. “So, with the system, it could lead to a degree of freedom of saying, ‘I want one photon or two photons, but not three.’”

In a paper published today in the journal Physical Review Letters(link is external), the researchers described how they created a venue for influencing a beam of photons, with several experimental knobs for adjusting the subtle interactions between them. In their experiment, they dialed up the interactions among three photons to be stronger than the interactions between two photons—a fact that allowed them to selectively remove three photons at a time from the beam. When they sent in a beam of light that generally contains no more than three photons, they got out just one or two photons at a time.


The effort to keep photons from congregating brought together several research groups at the University of Maryland (UMD). Ornelas-Huerta, Physics professor Steven Rolston--a Fellow of the Joint Quantum Institute and Quantum Technology Center--and JQI Fellow and NIST physicist Trey Porto, together with other team members, carried out the experiment. Adjunct faculty Alexey Gorhkov and Michael Gullans, both NIST physicists and Fellows of the Joint Center for Quantum Information and Computer Science, and colleagues focused on the theoretical explanation.

“We thought we had a simple idea,” says Gullans, who began working on this line of research in 2017 when he was a JQI postdoctoral researcher. “And then we tried the experiment. And we had to invent a bunch of new ideas for how to calculate three-body physics and we also spent a huge amount of time learning how to analyze the data and interpret the data to see evidence for this effect.”

That seemingly simple idea was to use Rydberg atoms as an intermediary between the normally non-communicative photons to create just the right conditions so that three photons traveling together would experience an interaction that would knock them out of the beam. These atoms are useful because they are sensitive to the influence of nearby photons and other atoms. The sensitivity arises because Rydberg atoms have electrons that roam far from the center of the atom, leaving them open to external influences—influences that can produce strong, adjustable interactions.

The interactions between the Rydberg atoms and a passing photon can form a polariton—a hybrid of the quantum states of the photon and the atoms that behaves like a new distinct particle. Polaritons have been used in many past experiments, and researchers know how to manipulate them (and their component photons) using lasers. The ability to manipulate these states inspired the researchers to try to craft a new sort of interaction where three polaritons interact in a distinctly different way than just two.

These sorts of interactions, called three-body interactions, aren’t very common in day-to-day life or even in a physics lab. Most interactions that happen at a scale bigger than an atom (no matter how many objects are involved) are two-body interactions, like the gravitational attraction between planets or the repulsion of electrons in a conductor. Being a two-body interactions simply means that the interactions between each possible pairing of objects is the same as if that pair existed in isolation. So the overall behavior of the collection is just the result of adding together the interactions between the pairs.

But in certain situations, like protons and neutrons binding together into atomic nuclei, three-body interactions occur and the total interaction is more than just the sum of interactions between pairs. These more complex relationships can arise when the particles that mediate the interaction (in nuclei, these particles are called gluons) can impact each other. So photons communicating through intermediary atoms have the potential for strong three-body interactions since the atoms can interact with each other and can change during the process.

“You have a feedback in the sense that the involved polaritons change because of the interaction,” says JQI postdoctoral researcher Przemyslaw Bienias, who was the theoretical lead author on the paper. So, you not only get an interaction but the interaction changes the polaritons' internal structure and this leads to those strong multi-body effects.”

You can think of the collection of Rydberg atoms in the experiment like a restaurant set up for Valentine’s Day with only intimate tables for two. Photons entering as couple or a single customer can happily enjoy a meal at a small, cozy table, but if you crowd three people around one, they are probably going to bump elbows and irritate each other. They will probably quickly leave the restaurant before getting to dessert.

For the photons (dressed up as polaritons), this change to the venue isn’t really about the physical space they share but about the abstract quantum space in which they exchange energy and momentum. In the abstract space, two photons can easily share a table without knocking each other into new states, but three will most likely elbow each other into new states and away from the table through an interaction.

The experiment’s success lies in the team determining how to orchestrate the necessary relationships between polaritons. They had to set the laser used to manipulate the atoms to a precise frequency, related to how the Rydberg atoms shuffle energy between quantum energy states that the outermost electron can inhabit. The team successfully created conditions where the possible interactions depended on the number of polaritons present. Just one or two and they were unlikely to scatter. But if three were available to exchange energy and momentum the chance of them interacting and being knocked out of the beam shot up. So after leaving the Rydberg atoms behind, the uncluttered stream of light is left containing just individual or pairs of photons.

The whole thing is the result of a carefully choreographed juggling act, with the atoms using energy from photons to move their electrons between low-, intermediate- and high-energy quantum states—all while simultaneously dancing with each other.

“It was challenging, both in theory and experiment,” Ornelas-Huerta says. “We needed to go into this experimental regime where we had strong interactions and we had a strong coupling between the light and the atoms and also we have to try to minimize the losses from the intermediate state.”

The theorists identified what laser frequencies to use and the signatures of three-photon losses that experimentalists looked for. Then they were able to closely match the experimental data to mathematical descriptions of how the interactions affected the photons traveling in bunches of various sizes and how the polaritons states exchanged energy and momentum during the interactions.

“There are still efforts in theory and experiment to keep studying different regimes of few-body interactions.” Ornelas-Huerta says. “And to study how we can tune them or how we can add other states to even have more degrees of freedom and make these interactions more tunable. There's still room to do much more research and interesting experiments on these systems.”

Understanding and being able to create many-body interactions opens opportunities to simulate the physics of other many-body interactions and to develop new technologies, like photonic gates that serve as the basic building blocks of quantum computers and quantum networks that can send messages between quantum devices.

“We now have a much clearer picture of the few-body physics in these Rydberg systems,” Gullans says. “And, I think where we want to go now is starting to put the pieces together—making photonic gates and quantum networks. We understand the fundamental physics well enough that we can start to get into those questions.”

Story by Bailey Bedford

In addition to Rolston, Porto, Gullans, Gorshkov, Ornelas-Huerta and Bienias, co-authors of the research paper include JQI graduate students Alexander Craddock and Andrew Hachtel; JQI postdoctoral researcher Mary E. Lyon; and JQI undergraduate summer researcher Marcin Kalinowski.

Research Contact: S. Rolston, This email address is being protected from spambots. You need JavaScript enabled to view it.
(link sends e-mail)

Original story:

Research Team Describes "Somersaulting" Photons

Spinning or rotating objects are commonplace, from toy tops and fidget spinners to spinning figure skaters. And from water circling a drain to far less welcome tornadoes and hurricanes.

In physics, there are two kinds of rotational motion, spin rotation or orbital rotation. Earth’s motion in our solar system nicely illustrates these: The daily 360 degree rotation of earth around its own axis is ‘spin’ rotation, while earth’s yearly trip around the sun is ‘orbital’ rotation. STOV pulse (on the left) moving through a nonlinear crystal undergoes second harmonic generation, generating the pulse on the right.A STOV pulse (on the left) moving through a nonlinear crystal undergoes second harmonic generation, generating the pulse on the right.

The quantity in physics defined to describe such rotational motion is “angular momentum” (AM). The important thing about AM is that it is a conserved quantity. Given an initial amount of it, it can be broken up and redistributed among particles (such as atoms, photons, pebbles, M&Ms) but the total AM must remain the same. Angular momentum is a vector. It is a quantity that has a direction, and this direction is perpendicular to the plane in which the rotational circulation occurs.

For the particles of light in laser beams—photons—these two kinds of AM are present. Photons have spin, but we can’t think of a photon as rotating on its own axis. Instead, the spin angular momentum (SAM) comes from the rotation of the photon’s electric field, and the SAM can only point forward or backward with respect to the beam direction. Photons in laser beams can also have orbital angular momentum (OAM). The simplest laser beam where the photons have OAM is the ‘donut beam’---if you shine such a beam on the wall, it will look like a bright donut or ring with a dark centre. In this case, the OAM vector also points forward or backward. The amazing fact, courtesy of quantum mechanics, is that the OAM is the same for every photon in the beam.

In a paper published today in the Journal Optica, Professor Howard Milchberg’s group (IREAP/ECE/Physics) demonstrates the surprising result that photons in vacuum can have orbital angular momentum vectors pointing sideways—at 90 degrees to the direction of propagation—a result literally orthogonal to the many decades-long expectation that OAM vectors could only point forward or backward. The research team, including graduate student and lead author Scott Hancock, postdoc Sina Zahedpour (EE Ph.D. '17), and Milchberg, did this by generating a donut pulse they dub an “edge-first flying donut”, depicted in the diagram (its more technical name is “spatio-temporal optical vortex”—STOV). Here, the donut hole is oriented sideways, and because the rotational circulation now occurs around the ring, the angular momentum vector points at right angles to the plane containing the ring. To prove that this sideways-pointing OAM is associated with individual photons and not just the overall shape of the flying donut, the team sent the pulse through a nonlinear crystal (shown in diagram) to undergo a well-known process called “second harmonic generation”, where 2 red photons are converted into a single blue photon with double the frequency. This reduces the number of photons by a factor of 2, which means each blue photon should have twice the sideways-pointing OAM—and this is exactly what the measurements showed. As seen in the diagram, the angular momentum of the flying donut (or STOV) –represented by the red and twice-longer blue arrows—is the composite effect of a swarm of photons somersaulting in lockstep.

There are numerous potential applications of STOVs. For example, the angular momentum conservation embodied by somersaulting photons may make STOV beams resistant to breakup by atmospheric turbulence, with potential application to free-space optical communications. In addition, because STOV photons must occur in pulses of light, such pulses could be used to dynamically excite a wide range of materials or to probe them in ways that exploit the OAM and the donut hole. “STOV pulses could play a big role in nonlinear optics,” says Milchberg, "where beams can control the material they propagate in, enabling novel applications in beam focusing, steering, and switching.”

Original story: