Of all the Physics sub-fields, condensed matter has probably had the greatest impact on our daily lives. It has spawned high technology developments from semiconductor electronics (used in modern computers, phones and other electronic products) to modern plastic and other exotic composite materials. Condensed matter is the area of physics most closely related to high technology and industrial applications. Its breadth and utility encourage interdisciplinary interactions with many other groups on and off the UMD campus.

See: Quantum Materials Center

Personnel

Research Areas

  • Ferroelectrics
  • Magnetic Oxides
  • Mesoscopic Physics
  • Microwave Properties of Materials
  • Nanoscale Electronics
  • Nano-optics
  • Nanostructures
  • Quantum Computation
  • Scanning Probe Microscopy
  • Semiconductor Device Physics
  • Spin Quantum Computation in Solids
  • Statistical Mechanics at Surfaces
  • Strongly Interacting Electron Systems
  • Superconductivity
  • Synthesis of Novel Materials
  • Thin Film Science
  • Topological Phases of Matter
  • 2D Magnetic Materials and Phenomena

Related Centers and Institutes:

Maryland Nanocenter

Condensed Matter Theory Center

Laboratory for Physical Sciences

Joint Quantum Institute

Condensed Matter Experiment News

  • UMD-Led Team Wins Major NSF Grant to Pioneer “High-Entropy” Quantum Materials

    A University of Maryland–led research team has been awarded a highly competitive grant from the National Science Foundation’s Designing Materials to Revolutionize and Engineer our Future (DMREF) program to launch a bold new frontier in quantum materials science: High-Entropy Quantum Materials. The $2 million, four-year award brings together scientists from

    Read More
  • Superconductivity’s Halo: Physicists Map Rare High-field Phase

     A puzzling form of superconductivity that arises only under strong magnetic fields has been mapped and explained by a research team of UMD, NIST and Rice University including  professor of physics and astronomy at Rice University. Their findings,  published in Science July 31, detail how uranium ditelluride (UTe2) develops a superconducting halo

    Read More
  • Work on 2D Magnets Featured in Nature Physics Journal

    University of Maryland Professor Cheng Gong (ECE), along with his postdocs Dr. Ti Xie, Dr. Jierui Liang and collaborators in Georgetown University (Professor Kai Liu group), UC Berkeley (Professor Ziqiang Qiu), University of Tennessee, Knoxville (Professor David Mandrus group) and UMD Physics (Professor Victor M. Yakovenko), have made a new discovery on controlling the

    Read More
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7