Faculty, Staff, Student and Alumni Awards & Notes

We proudly recognize members of our community who recently garnered major honors, began new positions and more.

 Faculty and Staff 
Students
Alumni
Department News 

In Memoriam

It is with much sadness that the Department of Physics announces the passing of several members of our community.

  • Melanie Knouse Cline, a coordinator in the Maryland Center for Fundamental Physics (MCFP), died on June 3, 2024.
  • Robert Dewar, a former postdoctoral associate, died on April 5, 2024.
  • Robert Goldstein, an alumnus, died on Sept. 4, 2024.
  • Charles Hussar, an alumnus and donor, died on March 30, 2024.
  • Verne Kauppe (B.S., '71), who worked in multisensor and microwave remote sensing, died on September 8, 2024.
  • William Kuperman (Ph.D., '72), former Director of the Marine Physical Laboratory of the Scripps Institution of Oceanography,  died on June 30, 2024. 
  • Ernest Madsen (B.S. and M.S.), a medical physicist at the University of Wisconsin, died on August 24, 2024.
  • Martin Vol Moody, an experimentalist working on gravitation, died on August 18, 2024.  
  • Robert L. Parker, (Ph.D.,'60) who worked in metallurgy for the U.S. government, died on April 21, 2024.
  • Joseph Perez (Ph,D., '68), former head of the Auburn University Physics Department, died on July 25, 2024.
  • Edward "Joe" Redish, an acclaimed researcher and Professor Emeritus, died on August 24, 2024.
  • Paul Richardson, a physicist with the U.S. Bureau of Mines, died on May 29, 2024.

Catching Cosmic Waves

University of Maryland (UMD) physics Ph.D. student Max Trevor found himself at a crossroads in 2016. Long fascinated by black holes, Trevor studied the enigmatic objects using X-ray astronomy as an undergraduate at the University of Maryland, Baltimore County (UMBC). But as his graduation date grew closer, Trevor wondered how he could take his passion to the next level. 

A groundbreaking announcement helped Trevor make a decision. In February 2016, scientists working on the Laser Interferometer Gravitational-Wave Observatory (LIGO) project announced that for the first time in history, they detected gravitational waves—ripples in spacetime caused by some of the most violent events in the universe, waves that were caused by two black holes colliding with each other billions of light-years away. For Trevor and many other researchers, the Nobel Prize-winning discovery opened up an entirely new way of observing the universe.

“I had some experience with X-rays at UMBC, which I enjoyed,” Trevor recalled. “But hearing about LIGO’s success made me think that gravitational astronomy was going to be the new hot research area for high-energy astrophysics. At that moment, I knew I had to jump in no matter what.”

Knowing that he wanted to pursue gravitational wave research and LIGO science as a graduate student, Trevor found his perfect match at UMD. Attracted by the Department of Physics’ decades-long legacy of gravitational wave research and its continued influence on the field, he joined the lab of Peter Shawhan—a professor of physics and LIGO principal investigator—in spring 2020. Together, they’re working to detect gravitational waves and improve the quality of the data collected by LIGO to ensure its accuracy for all researchers in the community.  

Shawhan, whose work with LIGO stretches back to his time as a postdoctoral researcher at Caltech in 1999, says that the project has come a long way since the announcement of its initial success.

“Today we can laugh and say, ‘Oh, it’s just another regular binary black hole merger,’ but it was a really big deal the first time we were able to detect one,” Shawhan said. “We’re now in the middle of LIGO’s fourth observational run. Thanks to decades of hard work from across the globe and our efforts here at UMD, we can now observe these events every couple of days.” 

Filtering out the noise, keeping the community connected

Detecting gravitational waves in space is no easy task, even now. To do its job, LIGO requires incredibly sensitive instruments called interferometers, which use laser beams to measure minute changes in distance caused by passing gravitational waves. There are currently two interferometers in the United States—one in Louisiana and another in Washington state—and it’s Trevor’s job to weed through the flood of data these interferometers produce, searching for the telltale signs of a gravitational wave event. 

“I write code that performs data analysis in real time. It basically asks, ‘Is this a gravitational wave, yes or no?’ and it tries to match the data points with known profiles of gravitational waves,” Trevor explained. “After that’s done, it repeats the process with the next batch. All this happens in seconds.”

Although interferometers can capture faint signals that come with faraway colliding neutron stars or merging black holes, the instruments are also prone to catching other waves that may not be involved with the cosmos at all—like nearby earthquakes, moving trains or even local weather. Trevor uses tools like machine learning to correlate these irrelevant waves with potential sources and adjusts the detection code to avoid them. According to Shawhan, Trevor’s work is paving the way for upgrades to the LIGO system for future observational runs. 

“Max’s improvements to the algorithms are especially valuable for detecting signals that are particularly challenging to identify,” Shawhan said. “He’s made it easier to separate out irrelevant noise from signals that are made by massive black holes.” 

Trevor is also a major part of the effort to keep astronomers around the world in touch with LIGO’s latest findings. He’s in charge of operating and running a rapid alert software package called Python search for Compact Binary Coalescences (PyCBC). Any time a potential gravitational wave is detected in space, PyCBC feeds information into a system that sends out rapid alerts to astronomers around the world through NASA’s General Coordinates Network—giving them a chance to turn their telescopes to the right part of the sky and potentially catch any visible light from explosive cosmic events. Thanks in part to Trevor’s efforts, PyCBC sends out an alert about once every three days on average, helping to produce over 120 alerts total since LIGO’s current run began.  GCN diagramGCN diagram

“The data is collected, analyzed and sent out really quickly,” Trevor said. “The astronomy community can get preliminary alerts about a possible event within 30 seconds. Timeliness is essential so that scientists can observe the event right as it’s happening and we can form a better understanding of phenomena like black holes and neutron star mergers. It’s really fulfilling for me to play a part in keeping everyone connected.” 

Since joining Shawhan’s lab, Trevor has made significant contributions to LIGO, co-authoring over 30 highly cited papers on the data gathered by the system. As he nears the completion of his doctoral program at UMD, Trevor hopes to continue his work. He believes that his projects, specifically those focused on identifying extraneous noise sources, will play a role in optimizing the next version of LIGO and bring scientists closer to understanding the world beyond Earth. 

“This current observational run is projected to end in June 2025, which is when LIGO will undergo crucial upgrades and changes to make it even more sensitive than previous iterations,” Trevor said. “I’d like to keep doing my part in helping the project stay alive—and supporting the community that seeks to explain how our universe works.”  

UMD Adds Undergraduate Physics Specializations in Biophysics and Applied Physics

The University of Maryland’s Department of Physics added two new specializations to its bachelor’s degree program this fall: biophysics and applied physics. These augment the existing primary physics major designed to prepare students for graduate studies in physics and the physics education specialization designed for students obtaining a teaching certificate through the College of Education.

“The American Institute of Physics and the American Physical Society have recommended that undergraduate physics programs be diversified to prepare students for a variety of career paths, including those that extend beyond graduate study in physics,” said Carter Hall, a professor and the associate chair of undergraduate education for the Department of Physics. “The biophysics and applied physics specializations were developed with these recommendations in mind and based upon input from our students and faculty.”

The biophysics specialization is designed for students interested in exploring the intersection of physics and biology. It serves those who aim to study biophysics in graduate school and those who seek a strong physics foundation while preparing for the MCAT and medical school. This specialization provides a comprehensive understanding of biological and physical systems, offering insights into the physical principles underlying biological processes. Students will gain valuable analytical and problem-solving skills, preparing them for advanced studies in biophysics or medical research or a career in the health sciences.

The applied physics specialization is designed for students who aim to enter the workforce in technical or scientific roles immediately after graduation or those who plan to pursue further studies in applied physics at the graduate level. This specialization focuses on practical applications of physics principles, equipping students with hands-on experience and problem-solving skills relevant to technology and research industries. By blending theoretical knowledge with practical training, the applied physics specialization prepares students to tackle real-world challenges and innovate in their chosen fields.

At UMD, the nearly 300 physics majors benefit from small class sizes, outstanding teachers and talented classmates. In addition, they are encouraged to participate in cutting-edge research with the department’s internationally recognized faculty members.

“Through participation in research projects, our students learn what it takes to conduct world-class scientific research,” Hall added. “Whether students decide to continue to study physics in graduate school or work in fields such as engineering, software development, law, business or education, a bachelor's degree in physics from Maryland provides an excellent foundation.”

Exploring the Mechanics of Life’s Tiniest Machines

Maria Mukhina hopes to shine a new light on how the intricate machinery of life works at its most fundamental level. 

With a background in physics, optics and nanotechnology, the assistant professor of physics who joined the University of Maryland in January 2024 studies how cells use mechanical energy to organize themselves and carry out their jobs—both when they’re healthy and when they’re not. Mukhina develops nanoscale tools to visualize and quantify the mechanical forces within cell nuclei. Her work focuses on the mechanical information processing in DNA and chromosomes, which could lead to a better understanding of gene expression, disease mechanisms and how complex structures like tissues form. Maria MukhinaMaria Mukhina

“Physics is just as important for controlling cell physiology as chemicals and genes,” Mukhina explained. “Yet, we know very little about the mechanics that emerge when millions of molecules come together in larger dynamic structures like the genome or cytoskeleton. This is due to the lack of appropriate tools that would allow us to read out the properties of these mechanics—and that is where my work comes in.”

Physics Chair Steven Rolston said Mukhina’s research will provide UMD students with new perspectives on how physics can be applied to many other disciplines, from biology to materials science. 

“Dr. Mukhina’s training in the optical physics of nanocrystals gives her unique insights in applying techniques based in physics to study genome mechanobiology—the interplay of mechanical forces with biological function,” Rolston said. “We are delighted to have her join our biological physics effort in the department.”

Using tiny tools to solve big mysteries

Growing up in Russia, Mukhina had no idea she would eventually pursue an academic career in physics. Raised in a family of musicians, engineers and doctors, she had no lab or research experience until she entered ITMO University in St. Petersburg as an undergraduate studying laser physics. 

“I was in third year of my undergraduate education when I finally realized that I could be working in a research lab looking for answers to a real scientific question,” she recalled. “Ever since then, I’ve been in love with experimental work in the lab. Nothing can compare with sitting there in the dark, doing some microscopy work and knowing something that no one else under the sun knows—it’s like pure magic!”

Mukhina brought that sense of wonder to her graduate studies at ITMO University, earning a master’s degree in photonics and optical computer science and a Ph.D. in optics. Her doctoral research focused on the new optical properties arising in spatially ordered ensembles of anisotropic nanocrystals, tiny semiconductor particles with unique properties that can be controlled by changing the size and shape of a nanocrystal. 

After that, Mukhina wanted to explore more biological applications for this rapidly evolving technology, so she joined the lab of Harvard University cell biologist Nancy Kleckner as a postdoc.

“The Kleckner lab introduced me to the world of cellular mechanics,” Mukhina said. “We viewed chromosomes as mechanical objects rather than carriers of genetic information. This perspective led me to a whole new world of questions about how physical forces can shape the behavior of cells. I was fascinated by the idea that one can use nanotools to do work in a living cell, to change how it performs its functions, and also how this branch of research draws so heavily from physics, cell biology, chemistry and more.”

The interdisciplinary nature of that work led Mukhina to look for research environments that could provide a space for both collaborative research and innovative thinking. She found the perfect new home for her research at UMD.   

“I wanted to find a place where I could interact with very diverse faculty and resources,” Mukhina said. “And beyond the university, I am also close to many cutting-edge research hubs like the U.S. National Science Foundation and the National Institutes of Health. I’m very excited to join a group with such varied expertise.”

 Now, Mukhina’s biggest research challenge is to accurately measure nanoscopic forces without disrupting the delicate environment of living cells. Drawing on her background in physics and nanotechnology, she develops tiny probes that can be directly introduced into cells to map out the forces at work within them. 

One probe is based on a concept called “DNA origami”—a technique that uses complementarity of two DNA strands to fold them into specific shapes. Another probe relies on a phenomenon called mechanoluminescence, where mechanical stresses applied to a material cause it to emit light. Both tools are designed to respond to the minute mechanical forces generated by mammalian cells, allowing researchers to create very detailed 4D maps of the intracellular force fields, which, as the researchers hypothesize, are used by the cells to orchestrate changes across microns of space, a huge distance in the cell universe. 

“All of this requires very fast and gentle to the cells light microscopy, so I’m also currently building a custom microscopy setup that will allow me to measure fluorescence or mechanoluminescence in events that occur within milliseconds,” Mukhina said. 

Mukhina also sees potential long-term applications for her research in medicine and beyond.

“Understanding the mechanics of how cells divide and segregate DNA could provide insights into cancer development or help us learn how to restart regeneration of our heart muscle cells after birth,” she explained. “My goal is for my work to open new avenues into developing regenerative therapies—and to push the boundaries of what we know about these physical forces that shape life itself.”