Better 'Photon Loops' May Be Key to Computer and Physics Advances

By Chad Boutin, National Institute of Standards and Technology

COLLEGE PARK, Md. -- Surprisingly, transmitting information-rich photons thousands of miles through fiber-optic cable is far easier than reliably sending them just a few nanometers through a computer circuit. However, it may soon be possible to steer these particles of light accurately through microchips because of research* performed at the Joint Quantum Institute, a research partnership of the University of Maryland and the National Institute of Standards and Technology (NIST), and at Harvard University.

Read More

JQI Wins Atomtronics MURI Award in FY 2010 Competition

Joint Quantum Institute (JQI) scientists have won a highly sought-after MURI award from the U.S. Department of Defense -- one of 32 projects selected for funding in the FY 2010 nationwide competition. The Pentagon will provide a total of $227 million over five years to awardees in the annual Multidisciplinary University Research Initiative (MURI) program, whose winners were chosen from 152 proposals evaluated by expert merit-review panels.Read More

 

 

Background Checking at LHC

The Large Hadron Collider (LHC) at CERN has begun 18 to 24 months of running at a 7-TeV center-of-mass energy—more than three times that achieved at the Fermilab collider. Before they can start to look for signals of new physics, however, the four LHC experiments, ATLAS, CMS, ALICE, and LHCb, must understand the huge spectrum of background events.Read More

 

 

UM Scientists Advance Quantum Computing & Energy Conversion Tech

Using a unique hybrid nanostructure, University of Maryland researchers have shown a new type of light-matter interaction and also demonstrated the first full quantum control of qubit spin within very tiny colloidal nanostructures (a few nanometers), thus taking a key step forward in efforts to create a quantum computer.

Published in the July 1 issue of Nature, their research builds on work by the same Maryland research team published in March in the journal Science (3-26-10). According to the authors and outside experts, the new findings further advance the promise these new nanostructures hold for quantum computing and for new, more efficient, energy generation technologies (such as photovoltaic cells), as well as for other technologies that are based on light-matter interactions like biomarkers. Read More

 

CREAM Team Finds Surprising Features in Cosmic Ray Energy Spectra

In May a University of Maryland-led team of scientists reported previously unknown features in the energy spectra of cosmic ray nuclei. Their findings contradict aspects of a prevailing model for how cosmic rays from outside our solar system may be accelerated to their very high energies by the expanding shock waves generated when massive stars explode as supernovas. Read More

Â