Women in Physics Group Changes its Name to Physicists of Underrepresented Genders

Women in Physics (WiP) has officially been renamed Physicists of Underrepresented Genders (PUGs) at the University of Maryland.

According to UMDPUGs (Physicists of Underrepresented Genders)PUGs (Physicists of Underrepresented Genders) physics graduate student Ina Flood, the group’s new president, the change reflects the organization’s ongoing commitment to fostering a supportive and encouraging community for all.

“Changing our name was a group decision initiated under Mika Chmielewski, our previous president,” Flood said. “The rationale behind this decision was to make it obvious that we’re committed to supporting people who might feel like they are underrepresented in the physics community. The name change is to help people feel that they’re included and welcome from the get-go.”

For more than a decade, WiP has provided physics undergraduate and graduate students with resources such as a mentoring program and networking opportunities. In addition to professional development events led by physics faculty members and professionals, the club also offered social programming like group study sessions, where members mingled and made new friends.

PUGs plans to continue the group’s ongoing programs and opportunities while taking a more proactive approach to supporting all members of the physics community. 

“As a university club, we’re already open to all people and sincerely welcome anyone who is interested in physics,” said incoming physics graduate student Kate Sturge (B.S. ’22, physics; B.S. ’22, astronomy), who was an active undergraduate member of WiP and is currently the PUGs webmaster and social media manager. “But this name change is our way of making ourselves more deliberate and explicit in supporting everyone in physics.”

Physics Chair Steve Rolston echoes the sentiment: "We value the contributions of everyone who shares our love of physics. We appreciate PUGs’ efforts to make that crystal clear."

Flood, Sturge and other PUGs members plan to do more to coordinate with other LGBTQ+ student organizations on campus. Flood said she hopes increased communication and collaboration will also help PUGs connect mentors with mentees and share more institutional knowledge about STEM and physics. The group also plans to develop more opportunities for safe in-person gatherings, including “study hours,” during which physics students gather to discuss and do homework together.

“Our biggest goal after our name change is to expand our accessibility and availability to members who may need guidance or community support during the school year,” Flood said. “It’s really important to our organization that we get people together, facilitate meaningful conversations and celebrate our shared identity as physicists.”

Compact Electron Accelerator Reaches New Speeds with Nothing But Light

Scientists harnessing precise control of ultrafast lasers have accelerated electrons over a 20-centimeter stretch to speeds usually reserved for particle accelerators the size of 10 football fields.

A team at the University of Maryland (UMD) headed by Professor of Physics and Electrical and Computer Engineering Howard Milchberg, in collaboration with the team of Jorge J. Rocca at Colorado State University (CSU), achieved this feat using two laser pulses sent through a jet of hydrogen gas. The first pulse tore apart the hydrogen, punching a hole through it and creating a channel of plasma. That channel guided a second, higher power pulse that scooped up electrons out of the plasma and dragged them along in its wake, accelerating them to nearly the speed of light in the process. With this technique, the team accelerated electrons to almost 40% of the energy achieved at massive facilities like the kilometer-long Linac Coherent Light Source (LCLS), the accelerator at SLAC National Accelerator Laboratory. The paper was published in the journal Physical Review X on September 16, 2022

“This is the first multi-GeV electron accelerator powered entirely by lasers,” says Milchberg, who is also affiliated with the Institute of Research Electronics and Applied Physics at UMD. “And with lasers becoming cheaper and more efficient, we expect that our technique will become the way to go for researchers in this field.”  An image from a simulation in which a laser pulse (red) drives a plasma wave, accelerating electrons in its wake. The bright yellow spot is the area with the highest concentration of electrons. In an experiment, scientists used this technique to accelerate electrons to nearly the speed of light over a span of just 20 centimeters. (Credit Bo Miao/IREAP) An image from a simulation in which a laser pulse (red) drives a plasma wave, accelerating electrons in its wake. The bright yellow spot is the area with the highest concentration of electrons. In an experiment, scientists used this technique to accelerate electrons to nearly the speed of light over a span of just 20 centimeters. (Credit Bo Miao/IREAP)

Motivating the new work are accelerators like LCLS, a kilometer-long runway that accelerates electrons to 13.6 billion electron volts (GeV)—the energy of an electron that’s moving at 99.99999993% the speed of light. LCLS’s predecessor is behind three Nobel-prize-winning discoveries about fundamental particles. Now, a third of the original accelerator has been converted to the LCLS, using its super-fast electrons to generate the most powerful X-ray laser beams in the world. Scientists use these X-rays to peer inside atoms and molecules in action, creating videos of chemical reactions. These videos are vital tools for drug discovery, optimized energy storage, innovation in electronics, and much more.  

Accelerating electrons to energies of tens of GeV is no easy feat. SLAC’s linear accelerator gives electrons the push they need using powerful electric fields propagating in a very long series of segmented metal tubes. If the electric fields were any more powerful, they would set off a lightning storm inside the tubes and seriously damage them. Being unable to push electrons harder, researchers have opted to simply push them for longer, providing more runway for the particles to accelerate. Hence the kilometer-long slice across northern California. To bring this technology to a more manageable scale, the UMD and CSU teams worked to boost electrons to nearly the speed of light using—fittingly enough—light itself.

“The goal ultimately is to shrink GeV-scale electron accelerators to a modest size room,” says Jaron Shrock, a graduate student in physics at UMD and co-first author on the work. “You’re taking kilometer-scale devices, and you have another factor of 1000 stronger accelerating field. So, you’re taking kilometer-scale to meter scale, that’s the goal of this technology.”

Creating those stronger accelerating fields in a lab employs a process called laser wakefield acceleration, in which a pulse of tightly focused and intense laser light is sent through a plasma, creating a disturbance and pulling electrons along in its wake. 

“You can imagine the laser pulse like a boat,” says Bo Miao, a postdoctoral fellow in physics at the University of Maryland and co-first author on the work. “As the laser pulse travels in the plasma, because it is so intense, it pushes the electrons out of its path, like water pushed aside by the prow of a boat. Those electrons loop around the boat and gather right behind it, traveling in the pulse’s wake.”

Laser wakefield acceleration was first proposed in 1979 and demonstrated in 1995. But the distance over which it could accelerate electrons remained stubbornly limited to a couple of centimeters. What enabled the UMD and CSU team to leverage wakefield acceleration more effectively than ever before was a technique the UMD team pioneered to tame the high-energy beam and keep it from spreading its energy too thin. Their technique punches a hole through the plasma, creating a waveguide that keeps the beam’s energy focused.

“A waveguide allows a pulse to propagate over a much longer distance,” Shrock explains. “We need to use plasma because these pulses are so high energy, they're so bright, they would destroy a traditional fiber optic cable. Plasma cannot be destroyed because in some sense it already is.”

Their technique creates something akin to fiber optic cables—the things that carry fiber optic internet service and other telecommunications signals—out of thin air. Or, more precisely, out of carefully sculpted jets of hydrogen gas.

A conventional fiber optic waveguide consists of two components: a central “core” guiding the light, and a surrounding “cladding” preventing the light from leaking out. To make their plasma waveguide, the team uses an additional laser beam and a jet of hydrogen gas. As this additional “guiding” laser travels through the jet, it rips the electrons off the hydrogen atoms and creates a channel of plasma. The plasma is hot and quickly starts expanding, creating a lower density plasma “core” and a higher density gas on its fringe, like a cylindrical shell. Then, the main laser beam (the one that will gather electrons in its wake) is sent through this channel. The very front edge of this pulse turns the higher density shell to plasma as well, creating the “cladding.” 

“It's kind of like the very first pulse clears an area out,” says Shrock, “and then the high-intensity pulse comes down like a train with somebody standing at the front throwing down the tracks as it's going.” 

Using UMD’s optically generated plasma waveguide technique, combined with the CSU team’s high-powered laser and expertise, the researchers were able to accelerate some of their electrons to a staggering 5 GeV. This is still a factor of 3 less than SLAC’s massive accelerator, and not quite the maximum achieved with laser wakefield acceleration (that honor belongs to a team at Lawrence Berkeley National Labs). However, the laser energy used per GeV of acceleration in the new work is a record, and the team says their technique is more versatile: It can potentially produce electron bursts thousands of times per second (as opposed to roughly once per second), making it a promising technique for many applications, from high energy physics to the generation of X-rays that can take videos of molecules and atoms in action like at LCLS. Now that the team has demonstrated the success of the method, they plan to refine the setup to improve performance and increase the acceleration to higher energies.

“Right now, the electrons are generated along the full length of the waveguide, 20 centimeters long, which makes their energy distribution less than ideal,” says Miao. “We can improve the design so that we can control where they are precisely injected, and then we can better control the quality of the accelerated electron beam.”

While the dream of LCLS on a tabletop is not a reality quite yet, the authors say this work shows a path forward. “There’s a lot of engineering and science to be done between now and then,” Shrock says. “Traditional accelerators produce highly repeatable beams with all the electrons having similar energies and traveling in the same direction. We are still learning how to improve these beam attributes in multi-GeV laser wakefield accelerators. It’s also likely that to achieve energies on the scale of tens of GeV, we will need to stage multiple wakefield accelerators, passing the accelerated electrons from one stage to the next while preserving the beam quality. So there’s a long way between now and having an LCLS type facility relying on laser wakefield acceleration.” 

This work was supported by the U.S. Department of Energy (DE-SC0015516, LaserNetUS DE-SC0019076/FWP#SCW1668, and DE-SC0011375), and the National Science Foundation (PHY1619582 and PHY2010511).

======================

Story by Dina Genkina

In addition to Milchberg, Rocca, Shrock and Miao, authors on the paper included Linus Feder, formerly a graduate student in physics at UMD and now a postdoctoral researcher at the University of Oxford, Reed Hollinger, John Morrison, Huanyu Song, and  Shoujun Wang, all research scientists at CSU, Ryan Netbailo, a graduate student in electrical and computer engineering at CSU, and Alexander Picksley, formerly a graduate student in physics at the University of Oxford and now a postdoctoral researcher at Lawrence Berkeley National Lab. 

Blessing the World With More Leons

On a warm June afternoon in 2022, a group of friends, family members and former coworkers gathered around a Bradford pear tree outside NASA’s Goddard Space Flight Center to remember a physicist named Leon Herreid. Herreid studied physics as a Ph.D. student at the University of Maryland and worked at NASA Goddard for 16 years before he died suddenly at age 40 in 1994.

Months after Herreid’s death, his widow Judy created the memorial, planting “Leon’s tree” and placing a brass plaque below it in one of the couple’s favorite spots—the baseball field where they used to play and drink beer in the summertime with NASA Goddard’s co-ed softball team. Along with the memorial, Judy launched a quirky tradition inspired by Leon himself.

“Years ago, I said to my sister-in-law, ‘I’m going to the tree, do you have any beer?’ What she had was something called Dead Guy Ale, so that’s what I take every time,” Judy explained. “Leon liked beer and he would think this was the funniest, most appropriate thing ever. I always tell any friend, ‘When you go to the memorial, be sure to pour a beer on him.’” 

Meanwhile, at the University of Maryland, Judy and her family have been honoring Leon’s legacy in a very different way. In 1995, Leon’s father, Paul Herreid, launched the Leon A. Herreid Science Graduate Fellowship Award for physics graduate students at UMD working in space science, with preference given to those affiliated with NASA Goddard.

“Paul was a giving philanthropist who really believed in education,” Judy explained. “He said he started those scholarships so we could create more Leons.” 

In 2021, Judy took her father-in-law’s mission a step further, establishing the Leon A. Herreid Current-Use Undergraduate Student Support Fund in Physics, a scholarship to support summer internships for undergraduate space science students at UMD, again with preference for those working with NASA Goddard. 

“Someone else came up with this idea and I liked that,” Judy said. “It was just another way to bless the world with more Leons.”

 

“A True Geek” 

Judy—she was Judy Schwartz back then, also an employee of STX—still remembers the day she met Leon at a work event three decades ago. 

“I remember seeing him in the kitchen and he was eating an anchovy sandwich and I thought, ‘Ugh, how disgusting. Who is this person?’” she laughed. “He had a rat tail and he was a bad dresser, people knew him for that. So, I wasn’t all that impressed.”

But as she got to know Leon better, she realized there was much more to this space scientist than she ever could have imagined.

“He was a true geek. I loved that. He was brilliant and also well rounded,” Judy recalled. “It wasn’t just space that he loved most—it was the computers, the problem-solving. I’d say, ‘Talk smart to me’ and he’d tell me about the universe. He just had a passion for science and that world.”

The couple married and had two children, Hannah and Noah. And like everything else Leon did, his parenting style was grounded in science.

“Leon would stand in the closet when Hannah was a baby trying to get her to go to sleep. He’d be in there holding her and reciting the periodic table,” Judy explained. “He didn’t know nursery rhymes or anything, so this is what he would do, and it would calm her every time. Best dad ever.”

Meanwhile, Leon was climbing the ladder at NASA, working on major missions including Landsat COBE and XTE gaining the respect of those around him. That included Nobel Laureate John Mather, a College Park Professor of Physics and senior scientist at NASA who has remained friendly with Judy and her children for more than 25 years.

Meeting the Future “Leons”

Hannah and Noah are adults now. And thanks to events like the June memorial for Leon, Judy is getting to know another inspiring group of young people—the recipients of her family’s scholarships and fellowships. That includes physics Ph.D. student Lucas Smith, who received the Leon A. Herreid Science Graduate Fellowship in May 2022. 

“Lucas reminded me so much of Leon,” Judy said. “The science thing was kind of how he breathed, and he was just so appreciative of the fellowship.”

For Smith, whose research centers on developing the next generation of gamma-ray telescopes, the Herreid Fellowship provides welcome support as he continues to work toward his Ph.D.  

“I am incredibly grateful to have had this opportunity. Any amount of financial assistance goes a long way to alleviate the cost-of-living expenses that graduate students have,” Smith explained. “It is really touching to know that the Herreid family is willing to extend their support.”

Like Smith, Emma Kleiner (B.S. ’22, physics and astronomy) attended the June memorial as well. Kleiner is the first student to receive support from the Leon A. Herreid Undergraduate Student Support Fund in Physics. The funding allowed her to spend the summer of 2022 completing her research with NASA astrophysicist Antara Basu-Zych.

“My work at NASA Goddard involves studying interacting and colliding galaxies using Swift X-ray data,” Kleiner explained. “By observing and identifying X-ray sources we can better understand the triggering or quenching of star formation in galaxies. Receiving this support from the Herreid scholarship has meant the world to me.” 

For Judy, supporting these future “Leons” is the kind of tribute she thinks her late husband would truly appreciate, keeping his spirit and his love for physics alive now and for many years to come.

“Talking about him and the scholarship, it keeps him alive,” she reflected. “Leon and his siblings didn’t have a dime in student loans; their father Paul helped them and kept giving to education to support others, and I think Leon would be proud to continue that, to give people that opportunity.”

 Written by Leslie Miller

Greene Named Distinguished University Professor

Richard Greene has been named a Distinguished University Professor—the highest academic honor bestowed by the University of Maryland. He will be recognized at the university’s annual Faculty and Staff Convocation on September 14, 2022.

Greene joined UMD as a professor in 1989 to lead the Center for Superconductivity Research (now called the Quantum Materials Center) in the Department of Physics as its founding director.

He is a pioneer in the study of superconductivity and the synthesis and study of advanced quantum materials. He discovered the first superconducting polymer, discovered several new quantum phenomena in complex materials and detected magnetic spin waves optically for the first time. Greene’s work has had a large impact on the fields of both materials science and physics.Rick Greene and advisee Nick Poniatowski (B.S., '20)Rick Greene and advisee Nick Poniatowski (B.S., '20)

He has published 435 articles that have been cited more than 33,000 times, mentored more than 20 students and postdocs, and received continuous funding from the National Science Foundation since 1993. Before joining UMD, Greene was a researcher at IBM.

He is a Fellow of the American Physical Society (APS) and the American Association for the Advancement of Science. The APS named its dissertation award for experimental condensed matter physics in his honor.

Greene earned his B.S. in physics from MIT in 1960 and his Ph.D. from Stanford University in 1967.

Greene was honored along with six other UMD professors, including two from the College of Computer, Mathematical, and Natural Sciences (CMNS): Dmitry Dolgopyat of Math and  Zhanqing Li of Department of Atmospheric and Oceanic Science and the Earth System Science Interdisciplinary Center.

“These faculty members are exceptionally deserving of being named Distinguished University Professors,” said Amitabh Varshney, dean of UMD’s College of Computer, Mathematical, and Natural Sciences (CMNS). “I was proud to nominate them for consideration, and I celebrate and honor their inspirational commitment to CMNS and our students through their teaching, research and service.”

Dolgopyat, Greene and Li join more than 50 colleagues in CMNS who have been named Distinguished University Professors since 1980. Distinguished University Professors are faculty members who have been recognized nationally and internationally for the importance of their scholarly achievements. UMD’s president, along with a committee composed of the provost and seven faculty members—including several Distinguished University Professors—from diverse disciplines select the honorees each year.