UMD_CMNS_Physics_S1_CMYK

  • Home
  • About Us
    • Physics Administration
    • Directions
    • Awards
    • Student Awards
    • Make a Donation
    • News
      • Research News
      • Department News
      • Newsletters
  • People
    • All
    • Faculty
      • Current
      • Emeritus
      • Adjunct
      • Affiliate
      • Research Professors
    • Research Scientists
    • Postdocs
    • Staff
    • Lecturers
    • Visitors
    • Graduate Students
  • Research
    • Research Areas
      • AI and Physical Sciences
      • Astro Metrology
      • Atomic, Molecular & Optical
      • Biophysics
      • Chemical Physics
      • Condensed Matter Experiment
      • Condensed Matter Theory
      • Cosmic Ray Physics
      • Elementary Particles
      • Gravitation Experiment
      • Gravitational Theory
      • High Energy Physics
      • Nonlinear Dynamics, Chaos and Complex Systems
      • Nuclear Physics
      • Particle Astrophysics
      • Physics Education Research
      • Plasma Physics
      • Plasma Theory
      • Quantum Science and Technology
      • Quarks, Hadrons and Nuclei
      • Space Physics
    • Centers & Institutes
  • Academics
    • OSES Home (Student Services)
    • OSES News
    • Undergraduate Program
      • Prospective Students
      • Apply Now
      • Degree Requirements and Policies
      • Scholarships
      • Undergraduate Research
      • Advising
      • Undergraduate Forms
      • Undergraduate Events
      • Departmental Honors
      • Society of Physics Students
      • FAQ
      • Undergraduate Student Committee
    • Graduate Program
      • Prospective Students
      • Open House
      • Degree Requirements
      • Graduate Resources
      • Deadlines and Forms
      • PhD Defenses
        • PhD Defenses 2025
        • PhD Defenses 2024
        • PhD Defenses 2023
        • PhD Defenses 2022
        • PhD Defenses 2021
        • PhD Defenses 2020
        • PhD Defenses 2019
        • PhD Defenses 2018
        • PhD Defenses 2017
        • PhD Defenses 2016
      • Events
      • Scholarships & Awards
      • Qualifier
      • Graduate Student Organizations
      • FAQ
    • Student Opportunities
      • GRAD-MAP
      • Graduate Student Organizations
      • Outreach Volunteering
      • Society of Physics Students
      • NSF S-STEM Program
      • Undergraduate Research
      • Women in Physics
      • Undergraduate Quantum Association
    • Courses
    • Academic Support
    • NSF S-STEM Program
    • Teaching Assistants
    • Where's my TA?
  • Events
    • Calendar
    • Physics Colloquia
    • Event Submission
    • W.J. Carr Lecture
    • Research Interaction Team (RIT) Math/Physics
    • Mechanick Quantum Biology Lecture
    • Irving and Renee Milchberg Endowed Lectureship
    • Charles W. Misner Endowed Lectureship in Gravitational Physics
    • John S. Toll Endowed Lecture
    • Prange Prize Lecture
    • Maryland Day
    • Outreach
      • Outreach Home
      • Physics is Phun
      • Discovery Days
    • Summer Programs
      • Physics Makers Camp
      • Physics of Quidditch
      • Science Discovery Camp
      • Advanced Physics Summer Program
      • PROPEL
      • Toolkit for Success
    • CU2MiP
    • CUWiP
    • Vortex Makerspace
  • Services
    • Computing Services
    • Conference Room Reservations
    • Department Operations Directory
    • Electronic and Mechanical Development
    • Hiring Procedures
    • Lecture Demo
    • Mental Health Resources
    • Physics Ombudspersons
    • Printing Services
      • Poster Print Request
    • Proposal Submissions
    • Purchase Order
    • Suggestion Box
    • Textbook Order Form

Grad Students' Theses Honored

Details
Category: Department News
Published: Thursday, April 23 2020 05:56

Christopher Eckberg has received the Charles A. Caramello Distinguished Dissertation Award from the University of Maryland Graduate School.Eckberg CChris Eckberg

The Caramello Distinguished Dissertation Award recognizes original work that makes an unusually significant contribution to the discipline. Eckberg’s thesis, Superconducting Enhancement in a Tunable Electronic Nematic System, was selected by a multi-disciplinary campus committee chaired by Professor Patricia Alexander from the Department of Human Development and Quantitative Methodology.  The prize carries an honorarium of $1,000.

Eckberg worked with Johnpierre Paglione of the Quantum Materials Center. After his graduation from UMD, Eckberg joined the Kang Wang group in the Electrical and Computer Engineering Department at UCLA.

young jeremy jqiJeremy Young

Jeremy Young was cited with an Honorable Mention in the competition for his thesis, Nonequilibrium Dynamics in Open Quantum Systems. Young worked with Alexey Gorshkov of the Joint Quantum Institute, and is now a postdoctoral researcher at the JQI.

Plotting the Future of Particle Physics Research

Details
Category: Department News
Published: Wednesday, April 22 2020 05:56

Three University of Maryland researchers have been elected co-conveners of topical groups that will help determine the future of particle physics research.  

The Snowmass Process is organized by the Division of Particles and Fields (DPF) of the American Physical Society. Snowmass facilitates discussion among high energy physicists for review by the Particle Physics Project Prioritization Panel (P5), which will identify and prioritize the most valuable areas of particle physics study in the years to come. The last P5 report was issued in May, 2014.

Associate Professor Alberto Belloni was named co-convener for the electroweak precision physics and constraining physics subgroup of the energy frontier group.  Because of the Heisenberg uncertainty principal, precise measurements of the known particles and their properties can reveal the presence of heavy as-of-yet undiscovered particles.  Measurements of this type foretold both the discovery of the top quark and the Higgs boson. Belloni has held various leadership appointments at the Compact Muon Solenoid experiment at CERN. He joined UMD in 2013.

Also in the energy frontier group, Zhen Liu was named co-convener for the more general explorations of Beyond the Standard Model physics. Such studies are key to understanding the discovery potential of proposed future particle colliders. Liu is a postdoctoral researcher at the Maryland Center for Fundamental Physics (MCFP). He received his Ph.D. from the University of Pittsburgh in 2015.

In the theory frontier group, Assistant Professor Zohreh Davoudi was elected co-convener of the lattice gauge theory discussion. Davoudi joined UMD in 2017 and has since received an Early Career Award from the Department of Energy, a Sloan Research Award and the Ken Wilson Award. She is also a member of MCFP.

Alumna Mirjam Cvetic (Ph.D., ’84) serves on the DPF Executive Committee and Snowmass 2021 Advisory Group. Haibo Yu (Ph.D., ‘07) is a co-convener in dark matter astronomy probes and Ira Rothstein (Ph.D., ’92) will work on effective field theory techniques.

Mohapatra's Pioneering "Seesaw" Work Noted

Details
Category: Department News
Published: Tuesday, April 21 2020 05:56

A paper by Distinguished University Professor Rabi Mohapatra has been named one of the three most influential titles in the first fifty years of Physical Review D, which was established to cover the fields of particles, fields, gravitation, and cosmology.

The “neutrino mass seesaw" paper written with Goran Senjanović (his former student, then a post-doc at the University of Maryland), has helped theorists better assess neutrinos and has inspired various experimental quests, as noted in Physics magazine.MohapatraRabi Convocation 2016Mohapatra honored as a Distinguished University Professor, Sept. 14, 2016.

Mohapatra received his Ph.D. from the University of Rochester in 1969, under the guidance of Robert Marshak and Susumu Okubo. After postdoctoral appointments at Stony Brook University and this campus, he joined the faculty of the City College of New York before returning to the University of Maryland as a full professor.

In addition to the neutrino mass seesaw paper, Mohapatra is well-known for being one of the co-proponents of the left-right symmetric theories of weak interactions, proposed during his UMD postdoctoral position in 1974.  He also proposed the experimental search for neutron-anti-neutron oscillation and the idea of the massless particle majoron. He has also worked extensively on SO(10) grand unification.

Mohapatra is a Fellow of the American Physical Society, a member of the Indian Academy of Sciences, a recipient of the Alexander von Humboldt Prize and a University of Maryland Distinguished Scholar-Teacher. In 2016, he was named a Distinguished University Professor.

==============

Reference paper: R. Mohapatra and G. Senjanović, “Neutrino masses and mixings in gauge models with spontaneous parity violation,” Phys. Rev. D 23, 165 (1981).

Jarzynski Awarded a 2020 Guggenheim Fellowship

Details
Category: Department News
Published: Monday, April 20 2020 05:56
The John Simon Guggenheim Memorial Foundation awarded a 2020 Guggenheim Fellowship to Distinguished University Professor Christopher Jarzynski.

Christopher JarzynskiChristopher Jarzynski. Photo credit: Faye Levine

Each year, 175 Guggenheim Fellowships are awarded to a diverse group of writers, scholars, artists and scientists. Chosen from nearly 3,000 applicants representing 53 scholarly disciplines and artistic fields, Jarzynski is one of only two winners selected in the physics category this year.

"The Guggenheim Foundation has been awarding these fellowships for scholarship and the creative arts for nearly a century, and quite a few have been awarded to UMD faculty over the years,” Jarzynski said. “I'm honored to have been selected as one of this year's Fellows. I plan to use the award for the sabbatical that I will take during the 2020-21 academic year."

Jarzynski is a statistical physicist and theoretical chemist who models the random motions of atoms and molecules using mathematics and statistics. Working at the boundary between chemistry and physics, Jarzynski studies how the laws of thermodynamics—originally developed to describe the operation of steam engines—apply to complex microscopic systems such as living cells and artificial nanoscale machines.

Jarzynski is well known for developing an equation to express the second law of thermodynamics for systems at the molecular scale. The equation is known as the Jarzynski equality. Published in the journal Physical Review Letters in 1997, the paper that introduced his equation has been cited in scientific literature more than 4,000 times.

When the 2018 Nobel Prize in physics was awarded for inventions in laser physics, the Nobel Committee cited testing the Jarzynski equality as an application of one of the winning inventions—optical tweezers. Optical tweezers use laser beams to manipulate extremely small objects such as biological molecules.

More recently, Jarzynski’s research has led to a new method for measuring “free energy”—the energy available to any system to perform useful work—in extremely small systems. This research is fundamental to new technologies and may lay the foundation for development of molecular- and quantum-scale machines.

A Fellow of the American Physical Society (APS) and a member of the American Academy of Arts and Sciences, Jarzynski received a 2020 Simons Fellowship and the APS’ 2019 Lars Onsager Prize, which recognizes outstanding research in theoretical statistical physics. He was also awarded a Fulbright Scholarship and the Raymond and Beverly Sackler Prize in the Physical Sciences. He serves on the editorial board for the Journal of Statistical Mechanics: Theory and Experiment and is an associate editor for the Journal of Statistical Physics.

Jarzynski earned his B.A. in physics from Princeton University and his Ph.D. in physics from the University of California, Berkeley. After a postdoctoral appointment at the Institute for Nuclear Theory in Seattle, he spent 10 years at Los Alamos National Laboratory. He has been on the faculty of the University of Maryland since 2006.

Original story here.

 

 

More Articles ...

  1. Peeking into a World of Spin-3/2 Materials
  2. New Protocol Helps Classify Topological Matter
  3. Understanding and Exploring Network Epidemiology in the Time of Coronavirus
  4. Donuts, Donut Holes and Topological Superconductors

Page 80 of 236

  • Start
  • Prev
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • Next
  • End
  • Physics Administration
  • Directions
  • Awards
  • Student Awards
  • Make a Donation
  • News
    • Research News
    • Department News
    • Newsletters

College and University Links

UMD_CMNS_Physics_P1_CMYK_W

 

UMD-Primary-Logo-White

Department of Physics

University of Maryland
College Park, MD 20742-4111
Phone: 301.405.3401

 

Questions or Comments? Send us an e-mail.

Information

  • Campus Directory
  • Scholarship Opportunities
  • Undergraduate Research Opportunities
  • Prospective Undergraduates
  • Interactive Campus Map
  • Metrorail Map
  • UMShuttle Routes
  • Make a Donation 
  • Web Accessibility
  • Twitter
Department of Physics - University of Maryland - College Park, MD 20742