Taking the SMART Path

In 2021, when Isabelle Brooks left her home in Minnesota to study physics at the University of Maryland, she knew it would mean a big transition—from an all-girls high school with fewer than 500 students to a huge college campus with more than 40,000 students. It turned out to be even more exciting than she expected.

“It was definitely a culture shock,” Brooks recalled. “I told my roommate it was crazy to me that I kept seeing so many faces I didn’t recognize. I was around so many different people doing so many differIsabelle BrooksIsabelle Brooksent things—it was a really cool and exciting experience.”

Brooks’ experiences have exceeded her expectations in more ways than one, and although she’s only a sophomore she’s already charting her path toward a career in physics. One big boost in that direction came last year when she was awarded a Department of Defense SMART (Science, Mathematics, and Research for Transformation) Scholarship. 

SMART Scholars receive full tuition for up to five years and hands-on internship experience working directly with an experienced mentor at one of over 200 innovative laboratories across the Army, Navy, Air Force and Department of Defense, plus a stipend and full-time employment with the Department of Defense after graduation. 

This summer, Brooks will intern at a U.S. Army facility in Maryland. 

“I’ll be working at Aberdeen Proving Ground with the Department of Defense,” Brooks said. “The lab I’ll be working with focuses on satellite communications and other innovative technologies for our armed forces. It’s super exciting.”

Physics in the family

Always a strong student, Brooks got an early introduction to physics thanks to her father who studied physics when he was in college.

“My dad was my biggest influence,” she explained. “He’s a patent attorney now and he works with a lot of science and technology, which has been super cool to watch as I’ve been growing up.”

Despite her interest in her dad’s work, Brooks wasn’t initially drawn to physics herself.

“My dad was always like, ‘It’s really important to study science,’ but I didn’t really want to,” Brooks recalled. “My freshman year in high school I actually did not do well in my introductory physics class at all, I didn’t like the content and I told my dad, ‘I’m never doing this.’”

All it took was one class to change her mind.

“In my senior year I ended up taking honors physics and I had the best, most supportive most influential professor who helped me understand that I am really good at this and there is an opportunity for me to do much more with it,” she said. “After that, it really made sense to me—I liked seeing how physics is playing out in the real world, and I knew this was something I wanted to do.”

So many possibilities

In the summer after Brooks’ first year at UMD, one of her relatives who works with the Defense Department encouraged her to apply for the SMART Scholarship to help her achieve her dream of a degree in physics. Months later she got the news she was hoping for.

“I was checking my inbox every day and when I saw the email I was shaking because I knew this had to be it,” she recalled. “When I opened the email and got the good news that I’d received the scholarship I just felt so honored. There are just so many possibilities that can come from this.”

Since then, regular check-in meetings with her SMART mentor James Mink, Chief of the Tactical Systems Branch (SATCOM) have helped Brooks learn more about the opportunities ahead and prepare for her summer internships. This summer—and every summer until she graduates—she’ll work directly with her mentor at the U.S. Army DEVCOM C5ISR Center - Aberdeen Proving Ground, gaining valuable hands-on experience and training that will prepare her for a full-time position there after graduation.

Brooks credits her participation in the FIRE (First-Year Innovation and Research Experience) program and her work with the Simulating Particle Detection research group for helping her build a strong foundation for her research, which has also focused on the challenges of quantum Fourier transforms—mathematical models that help to transform the signals between two different domains. 

She’s gained more confidence in herself and her abilities every step of the way.

“My parents always raised me to believe I could do anything I put my mind to, overcome any obstacle, but I think coming to such a big school, at first I wasn’t sure if I could really do this,” she recalled. “But now I just feel like I’ve opened up so much more confidence in myself and an awareness of my ability and my strength as a student, and that feels really good.”

Brooks continues to explore her fascination with physics in exciting and unexpected ways, thanks to professors who challenge and inspire her. Her favorite class this year was PHYS 235: The Making of the Atomic Bomb.

“It’s taught by Professor Sylvester Gates, who I think is the coolest person ever,” Brooks said. “I was so excited when I was in that class, but it was definitely hard. If I wasn’t a physics major, I think I’d be crying with the problem sets we had and the material we worked on, but that class and a lot of my physics classes have pushed me to think in new ways.”

It's been less than two years since Brooks came to UMD from a small Minnesota high school, but now as she pursues her passion for physics and looks ahead to the opportunities that will come with her SMART Scholarship, she’s thinking big.

“I just have this feeling that I can do a lot more with my life and my education than I ever grasped,” she explained. “I think with this Defense Department scholarship I’ll most likely pivot towards applied research and satellite communication technology, and knowing that the work I’ll be doing will actually support people who fight for our country is incredibly amazing. I can’t wait to make a difference.”

 

Written by Leslie Miller

Alum Jonathan Hoffman Heads Toward New Horizon in Navigation Science

As a PhD graduation present, UMD physics alumnus Jonathan Hoffman’s adviser gave him a signed copy of the book Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time. The book follows John Harrison, an 18th-century carpenter who took it upon himself to solve what was known as the longitude problem.

Jonathan Hoffman Jonathan Hoffman Back then, ships at sea had no way of measuring their longitude—their position east or west of the prime meridian—causing many to get lost and often shipwrecked as a result. Harrison built five generations of clocks—which he named H1 through H5—culminating in the most precise clock of his time that sailors could use to precisely track the sun’s location at noon and thus infer their longitude.

Longitude quickly became Hoffman’s favorite book. Eight years later, as a program manager at the Defense Advanced Research Projects Agency (DARPA), Hoffman started a new program called H6 seeking to build a ‘spiritual successor’ to Harrison’s clocks: a “6th clock” that would be a compact, affordable, and precise device that would help navigate in situations where a GPS signal is unavailable. “It's the clock that Harrison would build to solve today's timing problem,” Hoffman says. 

Harrison’s story was mired in controversy. In 1714, the British Parliament announced the Longitude Prize, an award of up to 20,000 pounds for anyone who could solve the longitude problem, but it was overseen by the royal astronomer—a proponent of the mainstream star-gazing (rather than Harrison’s timekeeping) approach. Although Harrison was awarded various prizes throughout his 45 years of work, he was never officially awarded the full prize.

As a program manager at DARPA, Hoffman’s role parallels not that of Harrison, but that of the Board of Longitude, which was established to oversee the prize. But his H6 program also seeks to avoid the mistakes made by that board. Instead of looking for a solution from a particular well-established technology, Hoffman wants to give scientists the opportunity to bring in new outside-the-box ideas. “I wanted to question if there’s a different way, a way of going back to the drawing board and making clocks, something that could be incredibly small but still maintain time correct to a microsecond for up to a week,” Hoffman says.

Scientific Roots

Hoffman hadn’t always had an eye toward project management. Like most who pursue a physics PhD, he grew up interested in science, broadly defined. “I always would like to grab books and look at astronomy pictures,” Hoffman recalls. Through high school and college, his interests in science, and physics in particular, deepened further. “I think it's fascinating that there's an underlying connection and description and law for how things function,” he says.

Entering graduate school at UMD in 2009, Hoffman intended to study string theory. “I was really enamored with the idea of understanding how all of the forces were unified,” he recalls. But a conversation with a theoretical physics professor at UMD steered Hoffman towards a more practical path in experimental physics. 

With an eye towards the future, Hoffman joined a lab overseen by Professors Luis Orozco and Steve Rolston, in collaboration with Fredrick Wellstood and Chris Lobb, working on a novel idea to combine different quantum computing technologies for the best of both worlds. The idea involved placing ultracold atoms—atoms cooled just a tad above absolute zero—next to superconducting qubits. Getting ultracold atoms and superconducting qubits close enough to each other and tuned appropriately to communicate with one another was a difficult proposition that had never been attempted before. To aid in the quest, the team decided to trap atoms in a light trap produced just outside an optical fiber. To coax an optical fiber into carrying most of the light just outside itself, rather than at its center, it was necessary to stretch the fiber incredibly thin—more than a hundred times smaller than a human hair.

The bulk of Hoffman’s graduate school work was to devise a technique for stretching optical fibers to that size, while ensuring that they continued to guide most of the light along their path. The requirements were stringent—just a few stray, unguided photons would destroy the superconducting state if they hit it. Virtually all of the light needed to remain guided by the fiber, trapping atoms. Hoffman and his labmates devised a bespoke machine for pulling the fiber, and a careful protocol that resulted in fibers that could retain a record 99.95% of the light.

Although the process was at times arduous, Hoffman credits his time in graduate school with teaching him to persist through a difficult problem. “Practically, day to day,” Hoffman says, “I don't think graduate school was as exciting and rewarding as what I do now. But it did teach some very important lessons about determination and focus.”

A Taste of the Bigger Picture

After graduating from UMD (and receiving his fortuitous graduation present) in 2014, Hoffman was still unsure what he wanted to do. A former student from the same lab told him about a job at Booz Allen Hamilton. “He said ‘you will help advise on who should get funding and you will follow people's work’,” Hoffman says. “And I didn't actually really understand what any of that meant, but I was lucky because I ended up loving it.”

The job description turned out to be exactly correct. At Booz Allen, Hoffman worked as an assistant to program managers at DARPA, learning about the work funded through the programs, and advising. “Having worked on a very particular problem for six years,” Hoffman says, “it was just an entirely broader array of subjects. I was looking at a field as a whole and seeing where there are technology gaps and how you can close them, helping advise on or what needs investment.”

Hoffman reveled in seeing the bigger picture and picking out areas where fundamental science, slightly refined, could benefit technology. He got to learn about and support programs in a broad array of fields, including atomic physics, chemical spectroscopy, integrated photonics and positioning, navigation, and timing. He worked alongside DARPA program managers and becoming one himself gradually became a career goal.

Inspired in part by Harrison’s story in the Longitude book, the related topics of positioning, navigation, and timing quickly became among Hoffman’s chief interests, along with quantum sensing. As the navigation-related program he was supporting was coming to a close, Hoffman realized that he wanted to dig deeper. As a Booz Allen Hamilton contractor, he would have been reassigned to other fields, so he found a new role at the Army Research Laboratory (ARL) where he was able to do a mix of research work and program management.

While at ARL, Hoffman collaborated with several UMD professors at the Quantum Technology Center and the Joint Quantum Institute. He worked closely with JQI Fellow and QTC Director Ronald Walsworth on quantum sensing problems—Walsworth’s area of expertise. He also continued thinking about positioning, navigation, and timing and started a program to create smaller clocks for portable GPS devices.

Juggling Programs and People

During his time at ARL, Hoffman was developing his ideas about alternative ways to make affordable yet precise clocks. When the opportunity arose to interview for a program management role at DARPA, he pitched his plan to encourage new approaches to the problem. “I guess they liked it well enough because they hired me,” Hoffman says.

Hoffman’s H6 program is set to begin in the coming months. Since arriving at DARPA in 2021, however, Hoffman’s interests have only broadened. He now dreams of a program to create portable MRI’s that could be an affordable tool in every doctor’s office and is managing other programs in quantum sensing and communication.

What he finds particularly rewarding about his work is the collaboration with a huge range of experts in different fields, from scientists to generals. “It is a really broad experience,” Hoffman says. “Working with academia, national labs, industry, large businesses, small businesses—it’s really great to get all of those perspectives and be able to interact with leaders across multiple fields.”

To continue interacting with many partners to make the best possible scientific advances, Hoffman encourages a broad range of people to work with DARPA and support their mission. He says people can come in as contractors, subject matter experts, apply for small business funding through various mechanisms, apply for young faculty awards, or apply for research grants and more.

Overall, Hofmann has no regrets about his transition from in-the-lab scientific work to program management. “It's absolutely important and it's fascinating and rewarding to understand and just be motivated by the specific science, but it's always been helpful for me having the larger picture of where this would go in the long-term plan.”

Story by Dina Genkina

UMD Physicists Hope to Strike Gold by Finding Dark Matter in an Old Mine

Nestled in the mountains of western South Dakota is the little town of Lead, which bills itself as “quaint” and “rough around the edges.” Visitors driving past the hair salon or dog park may never guess that an unusual—even otherworldly—experiment is happening a mile below the surface.

A research team that includes University of Maryland physics faculty members and graduate students hopes to lure a hypothesized particle from outer space to the town’s Sanford Underground Research Facility, housed in a former gold mine that operated at the height of the 1870s gold rush. 

More specifically, they are searching for WIMPs—weakly interacting massive particles which are thought to have formed when the universe was just a microsecond old. The research facility suits this type of search because the depth allows the absorption of cosmic rays, which would otherwise interfere with experiments.

If WIMPs are observed, they could hold clues to the nature of dark matter and structure of the universe, which remain some of the most perplexing problems in physics.

Just getting started
The UMD team is led by Physics Professor Carter Hall, who has been looking for dark matter for 15 years. Excited by the prospect of observing unexplained physical phenomena, Hall joined the Large Underground Xenon (LUX) experiment, an earlier instrument at the Sanford Lab that attempted to detect dark matter from 2012 to 2016.

LUX was the most sensitive WIMP dark matter detector in the world until 2018. Its successor at Sanford, the new and improved LUX-ZEPLIN (LZ) experiment, launched last year. Hall believes LZ has even better odds of detecting or ruling out dark matter due to its significantly larger target. It’s specifically designed to search for WIMPs—a strong candidate for dark matter that, if proven to exist, could help account for the missing 85% of the universe’s mass.

Unlike experiments conducted at particle smashers like the Large Hadron Collider (LHC) in Switzerland, the LZ attempts to directly observe—rather than manufacture—dark matter. Anwar Bhatti, a research professor in UMD’s Department of Physics, said there are pros and cons to both approaches. He worked at the LHC from 2005 to 2013 and is now part of the LZ team at UMD.

Bhatti said the odds of finding irrefutable proof of WIMPs are slim, but he hopes previously undiscovered particles will show up in their experiment, leaving a trail of clues in their wake.

“There’s a chance we will see hints of dark matter, but whether it’s conclusive remains to be seen,” Bhatti said. 

UMD physics graduate students John Armstrong, Eli Mizrachi, and John Silk are also part of this experiment, and the team published its first set of results in July 2022 following a few months of data collection. No dark matter was detected, but their results show that the experiment is running smoothly. Researchers expect to continue collecting data for up to five years.

“That was just a little taste of the data,” Hall said. “It convinced us that the experiment is working well, and we were able to rule out certain types of WIMPs that had not been explored before. We’re currently the world’s most sensitive WIMP search.”

Sparks in the dark

These direct searches for dark matter can only be conducted underground because researchers need to eliminate surface-level cosmic radiation, which can muddle dark matter signals and make them easier to miss. 

“Here, on the surface of the Earth, we’re constantly being bathed in cosmic particles that are raining down upon us. Some of them have come from across the galaxy and some of them have come across the universe,” Hall explained. “Our experiment is about a mile underground, and that mile of rock absorbs almost all of those conventional cosmic rays. That means that we can look for some exotic component which doesn’t interact very much and would not be absorbed by the rock.”

In the LZ experiment, bursts of light are produced by particle collisions. Researchers then work backward, using the characteristics of these flashes of light to determine the type of particle.

The UMD research group calibrates the instrument that powers the LZ experiment, which involves preparing and injecting tritium—a radioactive form of hydrogen—into a liquefied form of xenon, an extremely dense gas. Once mixed, the radioactive mixture is pumped throughout the instrument, which is where the particle collisions can be observed.

The researchers then analyze the mixture’s decay to determine how the instrument responds to background events that are not dark matter. By process of elimination, the researchers learn the types of interactions are—and aren’t—important.

“That tells us what dark matter does not look like, so what we’re going to be looking for in the dark matter search data are events that don’t fit that pattern,” Hall said.

The UMD team also built, and now operates, two mass spectrometry systems that monitor xenon to ensure it isn’t poisoned by impurities like krypton, a gas found in the atmosphere. To detect dark matter scatterings, xenon must be extremely pure with no more than 100 parts per quadrillion of krypton.

Rewriting the physics playbook

The researchers will not know if they found dark matter until their next data set is released. This could take at least a year because they want the sensitivity of the second data set to significantly exceed that of the first, which requires a larger amount of data overall.

If detected, these WIMP particles would prompt a massive overhaul of the Standard Model of particle physics, which explains the fundamental forces of the universe. While this experiment could answer pressing questions about the universe, there is a good chance it will also create new ones. Hall thinks up-and-coming physicists will welcome that challenge. 

“It would mean that a lot of our basic ideas about the fundamental constituents of nature would need to be revised in one way or another,” Hall said. “Understanding how that would fit into particle physics as we know it would immediately become the big challenge for the next generation of particle physicists.”

Written by Emily Nunez

Twisting Up Atoms Through Space and Time