Mapping Maryland’s Methane: UMD Initiative Takes Flight

University of Maryland Physics Professor Daniel Lathrop is making significant strides in tracking methane emissions on UMD’s campus and beyond. 

In 2024, Lathrop and his team surveyed the stinky vapor plumes on the UMD campus caused by the university’s aging energy infrastructure for their Remediation of Methane, Water, and Heat Waste Grand Challenges project. With support from students, staff and faculty members across the university, Lathrop’s team helped pinpoint several key locations where excessive steam produced to power campus buildings escaped. Thanks to their efforts, the UMD community better understands the university’s energy production and consumption systems and environmental footprint and plans to use that information to remediate the systems. 

Last month, Lathrop took the project to the skies to apply what he learned from his studies on UMD’s campus to address Maryland’s environmental challenges throughout the state. Excessive methane emission continues to be a major problem as populations grow, leading to air quality decline, increased atmospheric heat trapping, and heightened energy waste and costs. 

“UMD’s campus represents a microcosm of urban and suburban environmental challenges that really have local, national and global implications,” said Lathrop, who holds joint appointments in the Departments of Physics and Geology, the Institute for Physical Science and Technology, and the Institute for Research in Electronics and Applied Physics. “Now that we have a better understanding of the problems our campus faces, we’re better equipped to tackle similar problems the rest of the state may have.” 

“Prior research has shown that most American cities with an aging utility infrastructure lose a lot of methane to the atmosphere,” added Atmospheric and Oceanic Science Professor Russell Dickerson, who is a co-investigator on the project. “We need powerful new tools to locate, quantify and control these emissions. Field campaigns can provide benefits for the efficient use of energy and help protect the health of Marylanders.”

To accomplish this goal, Lathrop partnered with the Maryland Wing of the Civil Air Patrol, a U.S. Air Force auxiliary unit based near Baltimore County, Md. With pilot Piotr Kulczakowicz, who is also director of the UMD Quantum Startup Foundry, Lathrop conducted two research flights aboard the Patrol’s Cessna aircraft in February, hoping to accurately map methane emissions.Piotr Kulczakowicz and Dan LathropPiotr Kulczakowicz and Dan Lathrop

“Just like how UMD came together to solve a problem that affects all the people living and working on our campus, we’re partnering with other members of our community to solve an issue that impacts the whole state,” Lathrop said. “As UMD faculty and as members of the Civil Air Patrol, Piotr and I were uniquely positioned to have UMD scientists team up with the Patrol in a relatively low-cost, efficient and mutually beneficial way of doing methane mapping compared to what many other researchers in this field have done. It’s the first time it’s ever been done here. We bring the instruments and expertise; they bring the planes.” 

On the ground and in the air

Lathrop’s first flight launched on February 10 from Annapolis, Md., circling around southern Pennsylvania and north central Maryland regions including Hagerstown. During this initial test flight, Lathrop focused on calibrating the instruments used to monitor methane—including a system called LI-COR, which is frequently used to track atmospheric changes. Strapped securely to a plane seat, the $30,000 optical sensor tracked real-time emission signatures in parts per billion, thanks to a two-meter-long tube attached to one of its ports and placed through a barely cracked plane window. Methane hot spots were easy to detect.

 “It was very obvious whenever we flew past a methane hot spot,” Lathrop said. “We recorded a notable methane spike of more than 2,250 parts per billion while flying by what we later found out was a landfill in Pennsylvania called Mountain View Reclamation Plant. In contrast, we observed that flying over the Chesapeake [Bay] resulted in a sudden drop in methane levels, or well below 2,050 parts per billion, which we used as a baseline for distinguishing emission signatures from noise.’” 

Lathrop’s second flight on February 24 yielded even more results. From the departure point near Fort Meade, Md., the plane executed two loops around the Baltimore region—one loop at a lower altitude of 1,700 feet and another at 2,700 feet for a more detailed picture of emission patterns near more populated urban areas. Lathrop (in the air) and later his team (on the ground) observed that cities tend to have correlated methane and carbon dioxide emissions, a distinct pattern that differs from other known sources like landfills or gas production facilities. 

“Cities have cars and trucks that leak both methane and carbon dioxide, CO₂,” Lathrop explained. “On the other hand, gas facilities only produce methane and not much CO₂. Generally, landfills only produce methane and not CO₂. These differences could help stakeholders, especially the people living in these communities or who control these emission sources, address the leakages on a more individual level and better mitigate the issues—like high energy waste and costs—that come with them.”

Although his findings are in many ways unique to Maryland, Lathrop says that the methodology used on his flights could benefit other research teams in the region and other states interested in pinpointing methane emission sources and minimizing leakages. Lathrop is currently developing standardized procedures that will allow other teams to carry out similar missions in the future, with hopes that all stakeholdeMethane readings.Methane readings.rs will be able to make better-informed decisions about their environmental impact. 

“We’re already planning for the next few flights across Maryland, which can be quite difficult considering our proximity to restricted airspace in D.C.,” Lathrop said. “But this is only part of a much bigger effort to reduce waste, reduce the associated environmental and fiscal costs, and protect our communities.”

 ###

Other UMD faculty members involved in the Remediation of Methane, Water, and Heat Waste Grand Challenges project include Environmental Science and Technology Associate Professor Stephanie Yarwood, FIRE Assistant Clinical Professor Danielle Niu, Geographical Sciences Assistant Professor Yiqun Xie, and Geology Associate Professor Karen Prestegaard and Professors Michael Evans and Vedran Lekic.

Norbert M. Linke to Return to UMD

The National Quantum Laboratory at Maryland (QLab) welcomes a renowned expert in quantum physics, computing and networking to serve as its new director, effective September 1, 2025. Norbert Linke, Ph.D., brings a decade of experience running a quantum computer user facility and conducting research on the applications of trapped atomic ions.Norbert LinkeNorbert Linke

With this appointment, Linke will return to the University of Maryland’s Department of Physics, where he worked as a faculty member from 2019 to 2022, and he will hold the first IonQ Professorship, an endowed position designed to support faculty focused on quantum computing research and advancing quantum strategy in Maryland and beyond. The IonQ Professorship was established with a $1 million gift from quantum computing firm IonQ and fully matched by the Maryland Department of Commerce. The match was made through the Maryland E-Nnovation Initiative Fund (MEIF), a state program created to spur basic and applied research in scientific and technical fields at colleges and universities.

Linke, who is currently a professor of physics at Duke University, co-invented several of the original patents that enabled the launch of IonQ, born out of UMD research and headquartered in College Park. The QLab was established in 2021 through a partnership between IonQ and UMD as the nation's first user facility to provide the global scientific community with hands-on access to a commercial-grade quantum computer. Housed in the Division of Information Technology and located in the Capital of Quantum in College Park, the QLab is dedicated to advancing quantum research and education.

"I'm honored to lead the QLab in its mission to make quantum computing accessible and drive innovation. I'm excited to work with the talented team here to push the boundaries of what's possible with this technology," Linke said. “President Pines gave QLab a motto, which is ‘Quantum for All.’ Following this, my vision for QLab is to provide broad access to the latest quantum resources for researchers, commercial stakeholders, as well as students and educators.”

The QLab fosters a vibrant quantum community, through its QLab Fellows and Global User Programs, as well as the QLab Collaboration Space, a dedicated hub for innovation that opened in 2023. The QLab also supports groundbreaking research through seed grants and collaborations with companies in the Quantum Startup Foundry, resulting in numerous publications and software development.

“Linke’s expertise and leadership will be invaluable as we continue to push the boundaries of quantum computing and foster a collaborative environment for innovation,” said Jeffrey K. Hollingsworth, vice president of information technology and chief information officer at UMD.

Linke's appointment comes at a time of rapid growth and development in the field of quantum computing, especially in the state of Maryland, where Gov. Wes Moore recently announced a $1 billion Capital of Quantum Initiative anchored by UMD and built on a landmark public-private partnership, in which the QLab is poised to play a key role.

 

Original story: https://umdrightnow.umd.edu/university-of-maryland-names-new-director-of-national-quantum-laboratory

About the QLab:
The National Quantum Laboratory at Maryland (QLab) is a national user facility that provides the scientific community with access to a commercial-grade quantum computer. Established through a partnership between IonQ and the University of Maryland, the QLab is dedicated to advancing quantum research and education and is housed in the Division of Information Technology.

  

Powered by Physics

Leonard Campanello (Ph.D. ’20, physics) spent the last three years on an ambitious mission—helping billions of Google Maps users find exactly what they’re looking for.

“I worked on the search function for Google Maps: you move the screen to a section of the map where you want to look for restaurants or hotels or things to do, add filters or attributes, like it has to be dog friendly or have a waterfront view,” Campanello explained. “And you want Google Maps to give you the best answer every time.”

As a Senior Data Scientist at Google, Campanello’s work brought science to the search process, applying the interdisciplinary physics training he received as a Ph.D. student in Professor Wolfgang Losert’s lab at the University of Maryland. Working on the Google Maps team, Campanello put his experience with models, algorithms, and analytics to work to better understand Maps users and optimize their search results.

“So, when you first issue a search, there's a list of places in a particular order. That order is carefully controlled,” Campanello explained. “We’ve proven that changing ranking algorithm has a material impact on the user's experience, and, at the end of the day, we need to know, did we have a net positive or a net negative effect on users? And we always strive to go in the net positive direction.”

As a scientist, Campanello has always been passionate about finding the stories hidden in data and building statistical models that capture the essence of the data, putting his physics skill set to work to answer a question or solve a problem.

“At the core of many problems in both physics and data science, I think we are trying to understand the data generating process so that we can better explain the fundamental physical phenomena driving what we see,” Campanello explained. “We observe that applying a force results in some change in a measurable quantity, whether the subject is a Google Maps user or a cell under the microscope. What's going on in the background that's fundamentally causing that change? How can we use this information to better understand our world? That’s what we want to find out.”

All in on physics

Campanello was a strong student who went all in on science and math since high school and earned a bachelor’s degree in physics from St. John’s University in 2013. Then, still unsure about how physics would translate into a future career, Campanello decided to pursue his Ph.D. at UMD, where he would have access to various options.

“I didn't know that what I wanted to do with enough certainty that I could commit to a graduate school that was kind of one dimensional,” Campanello recalled. “UMD had a massive physics department with a diversity of people in experiment and theory, whether it was condensed matter or high energy or biophysics or whatever, and that range of options was what ultimately kind of pulled me to UMD.”

After spending his first year working in condensed matter theory, a class with Physics Professor Michelle Girvan gave Campanello a whole new perspective.

“The class was nonlinear dynamics of extended systems and to this day it's probably the most influential class I ever took,” Campanello said. “Her problem-solving approach, including using graph theory and complex systems models, which I was never exposed to before, was eye-opening. We could actually create mathematical representations of all of these phenomena that we see in the world. And I was just wowed.”

At Girvan’s suggestion, Campanello joined Losert’s lab and began his Ph.D. research quantifying and modeling different dynamic processes, specifically complex interactions in biological systems.

“We already knew what some of the interactions were, so we knew that if we put this immune cell in the presence of some material, the immune cell would react in a specific way, which we could also measure under a microscope,” Campanello explained. “So given this set of biochemical information on the way these things behave short-term, medium-term and long-term, we said, how can we fit mathematical models to the microscope data and then use this to make inferences about this system as a whole?”

Opportunities, collaborations and simulations

Campanello took advantage of many opportunities at UMD, from teaching multiple MATLAB Boot Camps on image processing, computer vision and data analysis to coaching teams of data science students for the annual university-wide Data Challenge competition. Meanwhile, his continuing work in Losert’s lab exposed him to a world of possibilities.

“Wolfgang gave me and everyone in his lab the opportunity to work on so many different projects and collaborations with the National Institutes of Health and others, whether it was fundamental cell biology to projects on the interface of immunotherapies and autoimmune diseases to cancer, it's just crazy how much exposure we had,” Campanello noted. “He would help us identify opportunities to apply our analysis and modeling tools, give us guidance on the projects, and then let us to run with it. I really appreciated that.”

Campanello earned his Ph.D. in August 2020 and continued to do research at UMD for about six months before landing a job at Citibank in early 2021, applying his experience in modeling and analytics to consumer banking. 

Later that same year, he accepted a very different kind of opportunity at Google, working with the team that supports Google Maps to evaluate, advance and improve its ever-expanding search functions and, later, new capabilities, thanks to the addition of artificial intelligence.  

“The team is like 30 or so engineers, product managers, designers, user-experience researchers, and I was the one data scientist,” Campanello explained. “One of my primary responsibilities when I first joined was to create metrics or measurements that were absolute—meaning not open to interpretation—and I spent a lot of time doing research in that area to ensure that those measurements aligned with what we wanted for the user. What do we measure to know if we made the experience better?”

A new opportunity

In February 2025, after more than three years at Google, Campanello left to join Optiver, an Amsterdam-based global market maker that buys and sells securities to provide liquidity to markets. In this new position, he’ll again leverage his physics skill set, this time as a quantitative researcher.

“Part of my role will be to help improve the team's predictions in order to make better trading decisions. Can we make predictions right now about what will happen later today or later this hour or even just one minute from now?” Campanello explained. “If we can put numbers to these things and build models that accurately predict outcomes, then we can ultimately use those models to improve liquidity for all market participants.”

Fascinated by finance—and still inspired by the power of physics—Campanello looks forward to this next opportunity to grow.

“I've always had an interest in finance and what I'm looking forward to the most in this new role is the ability to really further my skill set,” Campanello said. “I want to get more exposure to what's happening at the bleeding edge of modeling and data science in quantitative finance. And I think this will be a good avenue for me to do that.”

Written by Leslie Miller

Kiyong Kim Elected as a Fellow of Optica

Kiyong Kim has been selected as a 2025 Optica Fellow for his pioneering contributions to the generation and understanding of terahertz radiation from strong laser field interactions with matter.  He is one of 121 members, from 27 countries, selected for their significant contributions to the advancement of optics and photonics through education, research, engineering, business leadership and sKiyong KimKiyong Kimervice.

Kim received his B.S. from Korea University and his Ph.D. from the University of Maryland. His graduate research focused on measuring ultrafast dynamics in the interaction of intense laser pulses with gases, atomic clusters, and plasmas. This work earned him the Marshall N. Rosenbluth Outstanding Doctoral Thesis Award from the American Physical Society.

Following his doctoral studies, Kim moved to Los Alamos National Laboratory as a Director’s Postdoctoral Fellow and while there received a Distinguished Performance Award. After accepting a position as an Assistant Professor at the University of Maryland in 2008, he received a DOE Early Career Research Award and an NSF Faculty Early Career Development Award. Kim also received the departmental Richard A. Ferrell Distinguished Faculty Fellowship in 2014.

From 2021 to 2022, Kim held appointments at Gwangju Institute of Science and Technology (GIST) and the Center for Relativistic Laser Science (CoReLS) at the Korean Institute for Basic Science, leading experiments on petawatt laser-driven electron acceleration, nonlinear Compton scattering of petawatt laser pulses and GeV electrons, and high-power terahertz generation.

With colleagues in physics and the Institute for Research in Electronics & Applied Physics (IREAP), he is co-PI on a $1.61M Major Research Instrumentation (MRI) award from the National Science Foundation (NSF) to upgrade high-power laser systems at UMD.

 

Connecting the Quantum Dots

Physics Ph.D. student Anantha Rao tests ways to build bigger and better quantum computers.

Anantha Rao grew up in Bengaluru, a city known as India’s tech hub due to its bustling startup culture and many international IT corporations. While many of Rao’s peers pursued engineering and related subjects, Rao’s love of science and knack for solving mathematical problems nudged him in a different direction.

“Everyone around me was an engineer or wanted to be one, and that is one thing I did not want to be,” Rao said. “I had this rebellious nature of going against the crowd, but I also wanted to solve fundamental problems in the basic sciences for the love of it—not for immediate applications.”

Rao discovered his calling after winning a high school physics competition. As a prize, he received a book written by Richard Feynman, a theoretical physicist who laid the groundwork for the field of quantum computing more than 40 years ago, and the field’s endless applications captivated Rao.

“Quantum computing has applications in studying how drug molecules bind to receptors or decrypting credit card transactions. You could study models of how the universe was created or see how the first molecule came into the picture,” Rao said. “Using ideas from quantum mechanics and computer science, you can also build better quantum computers, which is the problem that I’m looking at today.”

Now a Ph.D. student in the University of Maryland’s Department of Physics and Joint Center for Quantum Information and Computer Science (QuICS), Rao probes the fundamental physics that could power the next generation of quantum computers. He said he’s grateful for the chance to pursue that challenge in the “Capital of Quantum” at UMD.

“UMD is one of the top schools in the world for quantum information, especially theory,” Rao said. “Ten years ago, if someone told me that I'd be here now, I would feel like it is a dream.”

Tackling malaria with tech

Before moving to the United States, Rao was a full-time physics student and part-time entrepreneur in India. While Rao was enrolled in a combined bachelor’s and master’s program at the Indian Institute of Science Education and Research Pune, he cofounded a startup to develop diagnostic tools for diseases like malaria, a mosquito-borne infection that kills an estimated 608,000 people per year, according to the U.S. Centers for Disease Control and Prevention.

The software he developed, dubbed Deep Learning for Malaria Detection (DeleMa Detect), relied on artificial intelligence (AI) to search patients’ blood smear images for the signs and stages of malaria infection. This technology is packed into a small, portable device, reducing the need for lab tests that can be costly and inaccessible in many parts of the world.

Rao’s startup received a $50,000 grant and won top prize at the International Genetically Engineered Machine (iGEM) 2021 Startup Showcase. Rao has since moved on to other projects but said his early entrepreneurial experience taught him lessons about project leadership and collaboration that he applies to his research every day.

“I learned a lot about AI during my brief stint with entrepreneurship, and that’s something I've been working on lately—using AI to solve problems in physics,” Rao said. “My main motivation now is: What are the toughest problems out there and how can I solve them?Rao at TU Delft.Rao at TU Delft.

Since joining UMD’s physics Ph.D. program in 2023, he has been working to identify—and answer—those questions, one at a time.

The making of MAViS

One of Rao’s biggest ongoing projects is a collaboration between UMD, the National Institute of Standards and Technology and Delft University of Technology in the Netherlands. He has been leading the Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays (MAViS) project, which aims to advance research that could lead to bigger and better quantum dot-based quantum computers.


Central to this concept are quantum dots, tiny semiconductor particles that serve as the building blocks of some quantum computers. These quantum computers operate at temperatures close to absolute zero, or −273.15 degrees Celsius—conditions that prompt the chips to engage in quantum mechanical behavior.

“The chips in your phone and chips in your laptop are made up of semiconductors, and similarly, we have quantum computers made out of semiconductors, except they operate at the coldest temperatures in the universe,” Rao explained. “The problem is you can't control them very well and you have a lot of unwanted interactions coming in.

To control each quantum dot, voltages must be applied to electrodes in their vicinity. Isolating this task can be tricky, though, because quantum dots are spaced just a few nanometers apart.

“What MAViS offers is a way to independently control each quantum dot in a very scalable and efficient way. This is a process called virtualization,” Rao explained. “Most importantly, it’s completely automatic. You press a button and MAViS solves a lot of equations faster than any human.”

By finding ways to offset unwanted interactions, which can introduce errors, researchers can make quantum computers run more efficiently and accurately. MAViS also uses “a little bit of AI” to enable corrections in real-time, Rao said.

Rao and his collaborators have seen encouraging results after testing MAViS on some of the world’s largest quantum dot devices in the Netherlands. MAViS successfully enabled researchers to operate and more efficiently control quantum dots, which in turn helps them control qubits—the fundamental building blocks of quantum computers.

Rao explained that one of the benefits of MAViS is that it works quickly and could free up time for researchers to focus on deeper tasks.

“We were able to do a task in about four hours that would have taken a month or two months of human effort,” Rao said. “Without MAViS, a lot of people with doctorate degrees would have needed to stare at computer screens and analyze complicated images to solve this problem. Now, researchers can automatically ‘virtualize’ their quantum dots and perform interesting experiments.”

Aside from his research with MAViS, Rao said his research on semiconductor qubits has also revealed some unusual physics, including elusive crystals made entirely of electrons.

“Another question in my research is: If you have these semiconductor quantum dots or quantum computers, what is some interesting physics that one could study in one dimension or two dimensions?” Rao said. “We've found evidence that exotic phases of matter—something called Wigner crystals—could be found in these devices.”

Giving back

As Rao dives deeper into quantum physics, he continually seeks ways to share his knowledge. MAViS and many of Rao’s past research projects involve open-source code so that the community at large can benefit.

“Since undergrad, I’ve wanted to give back to the community as I’ve learned things, and one way is through open-source projects and mentoring other students,” said Rao, who also worked as a teaching assistant and served on graduate student committees at UMD. “We hope to eventually make MAViS open source so that people anywhere in the world can build better, scalable quantum-dot quantum computers.”

After Rao graduates, he hopes to find a job that will enable him to keep tackling the big questions in quantum physics, whether that’s in academia or private industry.

“My pursuit is the best research and the best science that I can do today, and I believe that approach will give me the right opportunity in an academic lab or industry lab,” Rao said. “There are a lot of problems to solve in quantum, and I’m working toward solving them one at a time.”

Written by Emily Nunez; published March, 2025